
For Use with MATLAB®

User’s Guide
Version 1

Fixed-Income
Toolbox

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Fixed-Income Toolbox User’s Guide
© COPYRIGHT 2003-2004 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or Docu-
mentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modifica-
tion, reproduction, release, performance, display, and disclosure of the Program and Documentation by the
federal government (or other entity acquiring for or through the federal government) and shall supersede any
conflicting contractual terms or conditions. If this License fails to meet the government's needs or is incon-
sistent in any respect with federal procurement law, the government agrees to return the Program and Docu-
mentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: May 2003 Online only New for Version 1.0 (Release 13)
November 2003 First printing Unchanged
June 2004 Online only Updated for Version 1.0.1 (Release 14)
August 2004 Online only Updated for Version 1.1 (Release 14+)

Contents
1
Mortgage-Backed Securities

What Are Mortgage-Backed Securities? 1-2

Using Fixed-Rate Mortgage Pool Functions 1-3
Inputs to Functions . 1-3
Generating Prepayment Vectors . 1-4
Mortgage Prepayments . 1-6
Risk Measurement . 1-8
Mortgage Pool Valuation . 1-9
Computing Option-Adjusted Spread (OAS) 1-10
Prepayments with Fewer Than 360 Months Remaining 1-12
Pools with Different Numbers of Coupons Remaining 1-14

2
Debt Instruments

Treasury Bills Defined . 2-2

Computing Treasury Bill Price and Yield 2-3
Treasury Bill Repurchase Agreements 2-3
Treasury Bill Yields . 2-5

Using Zero-Coupon Bonds . 2-7
Measuring Zero-Coupon Bond Function Quality 2-7
Pricing Treasury Notes . 2-7
Pricing Corporate Bonds . 2-9

Stepped-Coupon Bonds . 2-11
Cash Flows from Stepped-Coupon Bonds 2-11
Price and Yield of Stepped-Coupon Bonds 2-12

Term Structure Calculations . 2-14
i

ii Contents
Computing Spot and Forward Curves 2-14
Computing Spreads . 2-16

3
Derivative Securities

Pricing and Hedging . 3-2
Swap Pricing Assumptions . 3-2
Swap Pricing Example . 3-3
Portfolio Hedging . 3-8

Convertible Bond Valuation . 3-10

Treasury Bond Futures . 3-12
Theoretical Prices . 3-12
Implied Repo . 3-15
Hedge Parameters . 3-16

4
Function Reference

Functions — Categorical List . 4-2
Cash Flows . 4-2
Certificates of Deposit . 4-2
Convertible Bonds . 4-2
Derivative Securities . 4-2
Mortgage-Backed Securities . 4-2
Option Adjusted Spread Computations 4-3
Stepped Coupon Bonds . 4-3
Treasury Bills . 4-4
Treasury Bond Futures . 4-4
Zero Coupon Instruments . 4-4

Functions — Alphabetical List . 4-5

Glossary

Index
iii

iv Contents

1

Mortgage-Backed
Securities

What Are Mortgage-Backed Securities?
(p. 1-2)

Describes mortgages and mortgage passthrough
securities.

Using Fixed-Rate Mortgage Pool
Functions (p. 1-3)

Illustrates the use of toolbox functions to perform
common calculations involved with mortgage-backed
securities.

1 Mortgage-Backed Securities

1-2
What Are Mortgage-Backed Securities?
Mortgage-backed securities (MBS) are a type of investment that represents
ownership in a group of mortgages. Principal and interest from the individual
mortgages are used to pay principal and interest on the MBS.

Ownership in a group of mortgages is typically represented by a passthrough
certificate (PC). Most passthrough certificates are issued by the Government
National Mortgage Agency, a branch of the United States Government, or by
one of two private corporations: Fannie Mae or Freddie Mac. With these
certificates homeowners’ payments pass from the originating bank through the
issuing agency to holders of the certificates. These agencies also frequently
guarantee that the certificate holder will receive timely payment of principal
and interest from the PCs.

Using Fixed-Rate Mortgage Pool Functions
Using Fixed-Rate Mortgage Pool Functions
The Fixed-Income Toolbox supports calculations involved with generic
fixed-rate mortgage pools and balloon mortgages. Passthrough certificates
typically have embedded call options in the form of prepayment. Prepayment
is an excess payment applied to the principal of a PC. These accelerated
payments reduce the effective life of a PC.

The toolbox comes with a standard Public Securities Association (PSA)
prepayment model and can generate multiples of standard prepayment speeds.
The Public Securities Association provides a set of uniform practices for
calculating the characteristics of mortgage-backed securities when there is an
assumed prepayment function.

You can obtain more information about these uniform practices on the PSA
Web site (http://www.bondmarkets.com/UP/default.shtml).

Alternatively, aside from the standard PSA implementation in this toolbox,
you can supply your own projected prepayment vectors. At this time, however,
custom prepayment functionality that incorporates pool-specific information
and interest rate forecasts are not available in this toolbox. If you plan to use
custom prepayment vectors in your calculations, you presumably already own
such a suite in MATLAB.

Inputs to Functions
Because of the generic, all-purpose nature of the toolbox passthrough
functions, users can fine tune them to conform to a particular mortgage. Most
functions require at least this set of inputs:

• Gross coupon rate

• Settlement date

• Issue (effective) date

• Maturity date

Typical optional inputs include standard prepayment speed (or customized
vector), net coupon rate (if different from gross coupon rate), and payment
delay in number of days.

All calculations are based on expected payment dates and actual cash flow to
the investor. For example, when GrossRate and CouponRate differ as inputs to
1-3

1 Mortgage-Backed Securities

1-4
mbsdurp, the function returns a modified duration based on CouponRate. (A
notable exception is mbspassthrough, which returns interest quantities based
on the GrossRate.)

Generating Prepayment Vectors
You can generate PSA multiple prepayment vectors very quickly. To generate
prepayment vectors of 100 and 200 PSA, type

PSASpeed = [100, 200];
[CPR, SMM] = psaspeed2rate(PSASpeed);

This function computes two prepayment values: conditional prepayment rate
(CPR) and single monthly mortality (SMM) rate. CPR is the percentage of
outstanding principal prepaid in one year. SMM is the percentage of
outstanding principal prepaid in one month. In other words, CPR is an annual
version of SMM.

Since the entire 360-by-2 array is too long to show in this book, observe the
SMM (100 and 200 PSA) plots, spaced one month apart, instead.

Prepayment assumptions form the basis upon which far more comprehensive
MBS calculations are based. As an illustration observe the following example,

Using Fixed-Rate Mortgage Pool Functions
which demonstrates the use of the function mbscfamounts to generate cash
flows and timings based on a set of standard prepayments.

Consider three mortgage pools that were sold on the issue date (which starts
unamortized). The first two pools “balloon out” in 60 months, and the third is
regularly amortized to the end. The prepayment speeds are assumed to be 100,
200, and 200 PSA, respectively.

Settle = [datenum('1-Feb-2000');
datenum('1-Feb-2000');
datenum('1-Feb-2000')];

Maturity = [datenum('1-Feb-2030')];

IssueDate = datenum('1-Feb-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;

PSASpeed = [100, 200];
[CPR, SMM] = psaspeed2rate(PSASpeed);

PrepayMatrix = ones(360,3);
PrepayMatrix(1:60,1:2) = SMM(1:60,1:2);
PrepayMatrix(:,3) = SMM(:,2);

[CFlowAmounts, CFlowDates, TFactors, Factors] = ...
mbscfamounts(Settle, Maturity, IssueDate, GrossRate, ...
CouponRate, Delay, [], PrepayMatrix);

The fourth output argument, Factors, indicates the fraction of the balance still
outstanding at the beginning of each month. A snapshot of this argument in the
MATLAB array editor illustrates the 60-month life of the first two of the
mortgages with balloon payments and the continuation of the third mortgage
until the end (360 months).
1-5

1 Mortgage-Backed Securities

1-6
You can readily see that mbscfamounts is the building block of most fixed rate
and balloon pool cash flows.

Mortgage Prepayments
Prepayment is beneficial to the passthrough owner when a mortgage pool has
been purchased at discount. The next example compares mortgage yields
(compounded monthly) versus the purchase clean price with constant
prepayment speed. The example illustrates that when you have purchased a
pool at a discount, prepayment generates a higher yield with decreasing
purchase price.

Price = [85; 90; 95];
Settle = datenum('15-Apr-2002');
Maturity = datenum('1 Jan 2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Speed = 100;

Compute the mortgage and bond-equivalent yields.

[MYield, BEMBSYield] = mbsyield(Price, Settle, Maturity, ...
IssueDate, GrossRate, CouponRate, Delay, Speed)

Using Fixed-Rate Mortgage Pool Functions
MYield =

 0.1018
 0.0918
 0.0828

BEMBSYield =

 0.1040
 0.0936
 0.0842

If for this same pool of mortgages, there was no prepayment (Speed = 0), the
yields would decline to

MYield =

 0.0926
 0.0861
 0.0802

BEMBSYield =

 0.0944
 0.0877
 0.0815

Likewise, if the rate of prepayment doubled (Speed = 200), the yields would
increase to

MYield =

 0.1124
 0.0984
 0.0858

BEMBSYield =

 0.1151
 0.1004
 0.0873
1-7

1 Mortgage-Backed Securities

1-8
For the same prepayment vector, deeper discount pools earn higher yields. For
more information see the descriptions of mbsprice and mbsyield.

Risk Measurement
The Fixed-Income Toolbox provides the most basic risk measures of a pool
portfolio:

• Modified duration

• Convexity

• Average life of pool

Consider the following example, which calculates the Macaulay and modified
durations given the price of a mortgage pool.

Price = [95; 100; 105];
Settle = datenum('15-Apr-2002');
Maturity = datenum('1-Jan-2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Speed = 100;

[YearDuration, ModDuration] = mbsdurp(Price, Settle, ...
Maturity, IssueDate, GrossRate, CouponRate, Delay, Speed)

YearDuration =

 6.1341
 6.3882
 6.6339

ModDuration =

 5.8863
 6.1552
 6.4159

Using Fixed-Income Toolbox functions, you can obtain modified duration and
convexity from either price or yield, as long as you specify a prepayment vector

Using Fixed-Rate Mortgage Pool Functions
or an assumed prepayment speed. The toolbox risk-measurement functions
(mbsdurp, mbsdury, mbsconvp, mbsconvy, and mbswal) adhere to the guidelines
listed in the PSA Uniform Practices manual.

Mortgage Pool Valuation
For accurate valuation of a mortgage pool, you must generate interest rate
paths and use them in conjunction with mortgage pool characteristics to
properly value the pool. A widely used methodology is the option-adjusted
spread (OAS). OAS measures the yield spread that is not directly attributable
to the characteristics of a fixed-income investment.

Calculating OAS
Prepayment alters the cash flows of an otherwise regularly amortizing
mortgage pool. A comprehensive option-adjusted spread calculation typically
begins with the generation of a set of paths of spot rates to predict prepayment.
A path is collection of i spot-rate paths, with corresponding j cash flows on each
of those paths.

The effect of the OAS on pool pricing is shown mathematically in the following
equation, where K represents the option-adjusted spread.

Calculating Effective Duration
Alternatively, if you are more interested in the sensitivity of a mortgage pool
to interest rate changes, you should use effective duration, which is a more
appropriate measure. Effective duration is defined mathematically with the
following equation.

Calculating Market Price
The toolbox has all the components needed to calculate OAS and effective
duration if you supply prepayment vectors or assumptions. For OAS, given a
prepayment vector, you can generate a set of cash flows with mbscfamounts.

PoolPrice 1
NumberofPaths

CFij

1 zeroratesij K+ +()
Tij

--

j

CFij

∑
i

NumberofPaths

∑×=

Effective Duration P y ∆y+() P y ∆y–()–
2P y()∆y

--=
1-9

1 Mortgage-Backed Securities

1-1
Discounting these cash flows with the reference curve and then adding OAS
produces the market price. See “Computing Option-Adjusted Spread (OAS)” on
page 1-10 for a discussion on the computation of option-adjusted spread.

Effective duration is a more difficult issue. While modified duration changes
the discounting process (by changing the yield used to discount cash flows),
effective duration needs to account for the change in cash flow because of the
change in yield. A possible solution is to recompute prices using mbsprice for a
small change in yield, in both the upwards and downwards directions. You
need to recompute the prepayment input because of this. Internally, this alters
the cash flows of the mortgage pool. Assuming that the OAS stays constant in
all yield environments, you can apply a set of discounting factors to the cash
flows in up and down yield environments to find the effective duration.

Computing Option-Adjusted Spread (OAS)
The option-adjusted spread is an amount of extra interest added above (or
below if negative) the reference zero curve. To compute the OAS, you must
provide the zero curve as an extra input. You can specify the zero curve in any
intervals and with any compounding method. (To minimize any error due to
interpolation, keep the intervals as regular and frequent as possible.) You must
supply a prepayment vector or specify a speed corresponding to a standard PSA
prepayment vector.

One way to compute the appropriate zero curve for an agency is to look at its
bond yields and bootstrap them from the shortest maturity onwards. You can
do this with the Financial Toolbox functions zbtprice and zbtyield.

The example below demonstrates how to calculate an appropriate zero curve
followed by computation of the pool’s OAS. This examples calculates the OAS
of a 30-year fixed rate mortgage with approximately a 28-year weighted
average maturity left, given an assumption of 0, 50, and 100 PSA prepayment
speeds.

Create curve for zerorates.

Bonds = [datenum('11/21/2002') 0 100 0 2 1;
datenum('02/20/2003') 0 100 0 2 1;
datenum('07/31/2004') 0.03 100 2 3 1;
datenum('08/15/2007') 0.035 100 2 3 1;
datenum('08/15/2012') 0.04875 100 2 3 1;
datenum('02/15/2031') 0.05375 100 2 3 1];
0

Using Fixed-Rate Mortgage Pool Functions

Yields = [0.0162;

0.0163;
0.0211;
0.0328;
0.0420;
0.0501];

Since the above is Treasury data and not selected agency data, a term structure
of spread is assumed. In this example the spread declines proportionally from
a maximum of 250 basis points at the shortest maturity.

Yields = Yields + 0.025 * (1./[1:6]');

Get parameters from Bonds matrix.

Settle = datenum('20-Aug-2002');
Maturity = Bonds(:,1);
CouponRate = Bonds(:,2);
Face = Bonds(:,3);
Period = Bonds(:,4);
Basis = Bonds(:,5);
EndMonthRule = Bonds(:,6);

[Prices, AccruedInterest] = bndprice(Yields, CouponRate, ...
Settle, Maturity, Period, Basis, EndMonthRule, [], [], [], [], ...
Face);

Use zbtprice to solve for zero rates.

[ZeroRatesP, CurveDatesP] = zbtprice(Bonds, Prices, Settle);
ZeroCompounding = 2*ones(size(ZeroRatesP));
ZeroMatrix = [CurveDatesP, ZeroRatesP, ZeroCompounding];

Use output from zbtprice to calculate the OAS.

Price = 95;
Settle = datenum('20-Aug-2002');
Maturity = datenum('2-Jan-2030');
IssueDate = datenum('2-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
1-11

1 Mortgage-Backed Securities

1-1
Interpolation = 1;
PrepaySpeed = [0; 50; 100];

OAS = mbsprice2oas(ZeroMatrix, Price, Settle, Maturity, ...
IssueDate, GrossRate, CouponRate, Delay, Interpolation, ...
PrepaySpeed)

OAS =

 312.6026
 343.6172
 374.6668

This example shows that one cash flow set is being discounted and solved for
its OAS, as contrasted with the NumberOfPaths set of cash flows as shown in
“Mortgage Pool Valuation” on page 1-9. Averaging the sets of cash flows
resulting from all simulations into one average cash flow vector and solving for
the OAS, discounts the averaged cash flows to have a present value of today’s
(average) price.

While this example uses the mortgage pool price (mbsprice2oas) to determine
the OAS, you can also use yield to resolve it (mbsyield2oas). Also, there are
reverse OAS functions that return prices and yields given OAS (mbsoas2price
and mbsoas2yield).

The example also restates earlier examples that show discount securities
benefit from higher level of prepayment, keeping everything else unchanged.
The relation is reversed for premium securities.

Prepayments with Fewer Than 360 Months
Remaining
When fewer than 360 months remain in the pool, the applicable PSA
prepayment vector is “seasoned” by the pool's age. (Elements in the
360-element prepayment vector that represent past payments are skipped. For
example, on a 30-year mortgage that is 10-months old, only the final 350
prepayments are applied.)

Assume, for example, that you have two 30-year loans, one new and another
10-months old. Both have the same PSA speed of 100 and prepay using the
vectors plotted below.
2

Using Fixed-Rate Mortgage Pool Functions
Still within the scope of relative valuation, you could also solve for the
percentage of the standard PSA prepayment vector given the pool’s arbitrary,
user-supplied prepayment vector, such that the PSA speed gives the same
Macaulay duration as the user-supplied prepayment vector.

If you supply a custom prepayment vector, you need to account for the number
of months remaining.

Price = 101;
Settle = datenum('1-Jan-2001');
Maturity = datenum('1-Jan-2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
PrepayMatrix = 0.005*ones(348,1);
CouponRate = 0.075;
Delay = 14;

ImpliedSpeed = mbsprice2speed(Price, Settle, Maturity, ...
IssueDate, GrossRate, PrepayMatrix, CouponRate, Delay)
1-13

1 Mortgage-Backed Securities

1-1
ImpliedSpeed =

104.2526

Examine the prepayment input. The remaining 29 years require 348 monthly
elements in the prepayment vector. Suppose then, keeping everything the
same, you change Settle to February 14, 2003.

Settle = datenum('14-Feb-2003');

You can use cpncount to count all incoming coupons received after Settle by
invoking

NumCouponsRemaining = cpncount(Settle, Maturity, 12, 1, [], ...
IssueDate)

NumCouponsRemaining =
323

The input 12 defines the monthly payment frequency, 1 defines the 30/360
basis, and IssueDate defines aging and determination-of-holder date. Thus,
you need to supply a 323-element vector to properly account for prepayment
corresponding to each monthly payment.

Pools with Different Numbers of Coupons
Remaining
Suppose one pool has two remaining coupons, and the other has three.
MATLAB expects the prepayment matrix to be in the following format:

V11 V21
V12 V22
NaN V23

Vij denotes the single monthly mortality (SMM) rate for pool i during the jth
coupon period since Settle.

The use of NaN to pad the prepayment matrix is necessary because MATLAB
cannot concatenate vectors of different lengths into a matrix. Also, it can serve
as an error check against any unintended operation (any MATLAB operation
that would return NaN).
4

Using Fixed-Rate Mortgage Pool Functions
For example, assume that the two-month pool has a constant SMM of 0.5% and
the three-month has a constant SMM of 1% in every period. The prepayment
matrix you would create is depicted below.

Create this input in whatever manner is most appropriate for you.

Summary of Prepayment Data Vector Representation

• When you specify a PSA prepayment speed, MATLAB “seasons” the pool
according to its age.

• When you specify your own prepayment matrix, identify the maximum
number of coupons remaining using cpncount. Then supply the matrix
elements up to the point when cash flow ceases to exist.

• When different length pools must exist in the same matrix, pad the shorter
one(s) with NaN. Each column of the prepayment matrix corresponds to a
specific pool.
1-15

1 Mortgage-Backed Securities

1-1
6

2

Debt Instruments

Treasury Bills Defined (p. 2-2) Defines Treasury bills and distinguishes them from
Treasury notes and bonds.

Computing Treasury Bill Price and
Yield (p. 2-3)

Describes the functions included in this toolbox for
computing prices and yields on Treasury bills.

Using Zero-Coupon Bonds (p. 2-7) Shows the use of zero-coupon bonds as a method to price
Treasury notes and corporate bonds.

Stepped-Coupon Bonds (p. 2-11) Discusses cash flow, prices, and yields on bonds whose
coupons change over time.

Term Structure Calculations (p. 2-14) Describes the construction of Treasury spot, par-yield,
and forward curves and their application in computing
rate spreads.

2 Debt Instruments

2-2
Treasury Bills Defined
Treasury bills are short-term securities (issued with maturities of one year or
less) sold by the United States Treasury. Sales of these securities are frequent,
usually weekly. From time to time, the Treasury also offers longer duration
securities called Treasury notes and Treasury bonds.

A Treasury bill is a discount security. The holder of the Treasury bill does not
receive periodic interest payments. Instead, at the time of sale, a percentage
discount is applied to the face value. At maturity, the holder redeems the bill
for full face value.

The basis for Treasury bill interest calculation is actual/360. Under this
system, interest accrues on the actual number of elapsed days between
purchase and maturity, and each year contains 360 days.

Computing Treasury Bill Price and Yield
Computing Treasury Bill Price and Yield
The Fixed-Income Toolbox provides a suite of functions for computing price and
yield on Treasury bills. These functions are shown below.

For all functions with yield in the computation, you can specify yield as
money-market or bond-equivalent yield. The functions all assume a face value
of $100 for each Treasury bill.

Treasury Bill Repurchase Agreements
The example below shows how to compute the break-even discount rate. This
is the rate that correctly prices the Treasury bill such that the profit from
selling the tail equals zero.

Maturity = '26-Dec-2002';
InitialDiscount = 0.0161;
PurchaseDate = '26-Sep-2002';
SaleDate = '26-Oct-2002';
RepoRate = 0.0149;

BreakevenDiscount = tbillrepo(RepoRate, InitialDiscount, ...
PurchaseDate, SaleDate, Maturity)

Treasury Bill Functions

Function Purpose

tbilldisc2yield Convert discount rate to yield.

tbillprice Price Treasury bill given its yield or discount rate.

tbillrepo Break-even discount of repurchase agreement.

tbillyield Yield and discount of Treasury bill given its price.

tbillyield2disc Convert yield to discount rate.

tbillval01 The value of one basis point given the characteristics
of the Treasury bill, as represented by its settlement
and maturity dates. You can relate the basis point to
discount, money-market, or bond-equivalent yield.
2-3

2 Debt Instruments

2-4
BreakevenDiscount =

 0.0167

You can check the result of this computation by examining the cash flows in
and out from the repurchase transaction. First compute the price of the
Treasury bill on the purchase date (September 26).

PriceOnPurchaseDate = tbillprice(InitialDiscount, ...
PurchaseDate, Maturity, 3)

PriceOnPurchaseDate =

 99.5930

Next compute the interest due on the repurchase agreement.

RepoInterest =
RepoRate*PriceOnPurchaseDate*days360(PurchaseDate,SaleDate)/360

RepoInterest =

 0.1237

RepoInterest for a 1.49% 30-day term repurchase agreement (30/360 basis) is
0.1237.

Finally, compute the price of the Treasury bill on the sale date (October 26).

PriceOnSaleDate = tbillprice(BreakevenDiscount, SaleDate, ...
Maturity, 3)

PriceOnSaleDate =

 99.7167

Computing Treasury Bill Price and Yield
Examining the cash flows, observe that the break-even discount causes the
sum of the price on the purchase date plus the accrued 30-day interest to be
equal to the price on sale date. The next table shows the cash flows.

Treasury Bill Yields
Using the same data as before, you can examine the money-market and
bond-equivalent yields of the Treasury bill at the time of purchase and sale.
The function tbilldisc2yield can perform both computations at one time.

Maturity = '26-Dec-2002';
InitialDiscount = 0.0161;
PurchaseDate = '26-Sep-2002';
SaleDate = '26-Oct-2002';
RepoRate = 0.0149;
BreakevenDiscount = tbillrepo(RepoRate, InitialDiscount, ...
PurchaseDate, SaleDate, Maturity)

[BEYield, MMYield] = ...
tbilldisc2yield([InitialDiscount; BreakevenDiscount], ...
[PurchaseDate; SaleDate], Maturity)

BEYield =

 0.01639
 0.01700

Cash Flows from Repurchase Agreement

Date Cash Out Flow Cash In Flow

9/26/2002 Purchase T-bill 99.593 Repo money 99.593

10/26/2002 Payment of repo 99.593 Sell T-bill 99.7168

Repo interest 0.1238

Total 199.3098 199.3098
2-5

2 Debt Instruments

2-6
MMYield =

 0.01617
 0.01677

For the short Treasury bill (fewer than 182 days to maturity), the
money-market yield is 360/365 of the bond-equivalent yield, as this example
shows.

Using Zero-Coupon Bonds
Using Zero-Coupon Bonds
A zero-coupon bond is a corporate, Treasury, or municipal debt instrument that
pays no periodic interest. Typically, the bond is redeemed at maturity for its
full face value. It will be a security issued at a discount from its face value, or
it may be a coupon bond stripped of its coupons and repackaged as a
zero-coupon bond.

The Fixed Income Toolbox provides functions for valuing zero-coupon debt
instruments. These functions supplement existing coupon bond functions such
as bndprice and bndyield that are available in the Financial Toolbox.

Measuring Zero-Coupon Bond Function Quality
Zero-coupon function quality is measured by how consistent the results are
with coupon-bearing bonds. Because the zero’s yield is essentially
bond-equivalent, comparisons with coupon-bearing bonds are possible.

In the textbook case, where time () is measured continuously and the rate (()
is continuously compounded, the value of a zero bond is simply the principal
multiplied by . In reality, the rate quoted is very seldom continuous and
the basis can be variable, requiring a more consistent approach to meet the
stricter demands of accurate pricing.

The following two examples

• “Pricing Treasury Notes” on page 2-7

• “Pricing Corporate Bonds” on page 2-9

show how the zero functions are consistent with supported coupon bond
functions.

Pricing Treasury Notes
A Treasury note can be considered to be a package of zeros. The toolbox
functions that price zeros require a coupon bond equivalent yield. That yield
can originate from any type of coupon paying bond, with any periodic payment,
or any accrual basis. The next example shows the use of the toolbox to price a
Treasury note and compares the calculated price with the actual price
quotation for that day.

t r

e r– t⋅
2-7

2 Debt Instruments

2-8
Settle = datenum('02-03-2003');
MaturityCpn = datenum('05-15-2009');
Period = 2;
Basis = 0;

% Quoted yield.
QYield = 0.03342;

% Quoted price.
QPriceACT = 112.127;

CouponRate = 0.055;

Extract the cash flow and compute price from the sum of zeros discounted.

[CFlows, CDates] = cfamounts(CouponRate, Settle, MaturityCpn, ...
Period, Basis);
MaturityofZeros = CDates;

Compute the price of the coupon bond identically as a collection of zeros by
multiplying the discount factors to the corresponding cash flows.

PriceofZeros = CFlows * zeroprice(QYield, Settle, ...
MaturityofZeros, Period, Basis)/100;

The following table shows the intermediate calculations.

Cash Flows Discount Factors Discounted Cash Flows

-1.2155 1.0000 -1.2155

2.7500 0.9908 2.7246

2.7500 0.9745 2.6799

2.7500 0.9585 2.6359

2.7500 0.9427 2.5925

2.7500 0.9272 2.5499

2.7500 0.9120 2.5080

Using Zero-Coupon Bonds
Compare the quoted price and the calculated price based on zeros.

[QPriceACT PriceofZeros]

ans =

112.1270 112.1263

This example shows that zeroprice can satisfactorily price a Treasury note, a
semiannual actual/actual basis bond, as if it were a composed of a series of zero
coupon bonds.

Pricing Corporate Bonds
You can similarly price a corporate bond, for which there is no corresponding
zero coupon bond, as opposed to a Treasury note, for which corresponding zeros
exist. You can create a synthetic zero-coupon bond and arrive at the quoted
coupon-bond price when you later sum the zeros.

2.7500 0.8970 2.4668

2.7500 0.8823 2.4263

2.7500 0.8678 2.3864

2.7500 0.8535 2.3472

2.7500 0.8395 2.3086

2.7500 0.8257 2.2706

102.7500 0.8121 83.4451

Total 112.1263

Cash Flows Discount Factors Discounted Cash Flows
2-9

2 Debt Instruments

2-1
Settle = datenum('02-05-2003');
MaturityCpn = datenum('01-14-2009');
Period = 2;
Basis = 1;
% Quoted yield.
QYield = 0.05974;
% Quoted price.
QPrice30 = 99.382;
CouponRate = 0.05850;

Extract cash flow and compute price from the sum of zeros.

[CFlows, CDates] = cfamounts(CouponRate, Settle, MaturityCpn, ...
Period, Basis);

Maturity = CDates;

Compute the price of the coupon bond identically as a collection of zeros by
multiplying the discount factors to the corresponding cash flows.

Price30 = CFlows * zeroprice(QYield, Settle, Maturity, Period, ...
Basis)/100;

Compare quoted price and calculated price based on zeros.

[QPrice30 Price30]

ans =

99.3820 99.3828

As a test of fidelity, intentionally giving the wrong basis, say actual/actual
(Basis = 0) instead of 30/360, gives a price of 99.3972. Such a systematic error,
if recurring in a more complex pricing routine, quickly adds up to large
inaccuracies.

In summary, the zero functions in MATLAB facilitate extraction of present
value from virtually any fixed-coupon instrument, up to any period in time.
0

Stepped-Coupon Bonds
Stepped-Coupon Bonds
A stepped-coupon bond has a fixed schedule of changing coupon amounts. Like
fixed coupon bonds, stepped-coupon bonds could have different periodic
payments and accrual bases.

The functions stepcpnprice and stepcpnyield compute prices and yields of
such bonds. An accompanying function stepcpncfamounts produces the cash
flow schedules pertaining to these bonds.

Cash Flows from Stepped-Coupon Bonds
Consider a bond that has a schedule of two coupons. Suppose the bond starts
out with a 2% coupon that steps up to 4% in two years and onwards to maturity.
Assume that the issue and settlement dates are both March 15, 2003. The bond
has a five-year maturity. Use stepcpncfamounts to generate the cash flow
schedule and times.

Settle = datenum('15-Mar-2003');
Maturity = datenum('15-Mar-2008');
ConvDates = [datenum('15-Mar-2005')];
CouponRates = [0.02, 0.04];

[CFlows, CDates, CTimes] = stepcpncfamounts(Settle, Maturity, ...
ConvDates, CouponRates)

Notably, ConvDates has one less element than CouponRates because MATLAB
assumes that the first element of CouponRates indicates the coupon schedule
between Settle (March 15, 2003) and the first element of ConvDates (March
15, 2005), shown diagrammatically below.

Pay 2% from
March 15, 2003

Pay 4% from
March 15, 2003

Effective 2% on
March 15, 2003

Effective 4% on
March 15, 2005
2-11

2 Debt Instruments

2-1
The payment on March 15, 2005 is still a 2% coupon. Payment of the 4% coupon
starts with the next payment, September 15, 2005. March 15, 2005 is the end
of first coupon schedule, not to be confused with the beginning of the second.

In summary, MATLAB takes user input as the end dates of coupon schedules
and computes the next coupon dates automatically.

The payment due on settlement (zero in this case) represents the accrued
interest due on that day. It is negative if such amount is nonzero. Comparison
with cfamounts in the Financial Toolbox shows that the two functions operate
identically.

Price and Yield of Stepped-Coupon Bonds
The toolbox provides two basic analytical functions to compute price and yield
for stepped-coupon bonds. Using the above bond as an example, you can
compute the price when the yield is known.

CouponDates Semiannual Coupon Payment

15-Mar-03 0

15-Sep-03 1

15-Mar-04 1

15-Sep-04 1

15-Mar-05 1

15-Sep-05 2

15-Mar-06 2

15-Sep-06 2

15-Mar-07 2

15-Sep-07 2

15-Mar-08 102
2

Stepped-Coupon Bonds
You can estimate the yield to maturity as a number-of-year weighted average
of coupon rates. For this bond the estimated yield is

or 3.33%. While definitely not exact (due to nonlinear relation of price and
yield), this estimate suggests close to par valuation and serves as a quick first
check on the function.

Yield = 0.0333;

[Price, AccruedInterest] = stepcpnprice(Yield, Settle, ...
Maturity, ConvDates, CouponRates)

The price returned is 99.2237 (per $100 notional), and the accrued interest is
zero, consistent with our earlier assertions.

To validate that there is consistency among the stepped-coupon functions, you
can use the above price and see if indeed it implies a 3.33% yield by using
stepcpnyield.

YTM = stepcpnyield(Price, Settle, Maturity, ConvDates, ...
CouponRates)

YTM =

 0.0333

2 2×() 4 3×()+
5

--
2-13

2 Debt Instruments

2-1
Term Structure Calculations
So far we have avoided a more formal definition of “yield” and its application.
In many situations when cash flow is available, discounting factors to the cash
flows may not be immediately apparent. In other cases, what is relevant is
often a spread, the difference between curves (also known as the term structure
of spread).

All these calculations require one main ingredient, the Treasury spot,
par-yield, or forward curve. Typically, the generation of these curves starts
with a series of on-the-run and selected off-the-run issues as inputs.

MATLAB uses these bonds to find spot rates one at a time, from the shortest
maturity onwards, using bootstrap techniques. All cash flows are used to
construct the spot curve, and rates between maturities (for these coupons) are
interpolated linearly.

Computing Spot and Forward Curves
For an illustration of how this works, observe the use of zbtyield (or
equivalently zbtprice) on a portfolio of six Treasury bills and bonds.

You can specify prices or yields to the bonds above to infer the spot curve. The
function zbtyield accepts yields (bond-equivalent yield, to be exact).

To proceed, first assemble the above table into a variable called Bonds. The first
column contains maturities, the second contains coupons, and the third

Bills Maturity Date Current Yield

3 month 4/17/03 1.15

6 month 7/17/03 1.18

Notes/Bonds Coupon Maturity Date Current Yield

2 year 1.750 12/31/04 1.68

5 year 3.000 11/15/07 2.97

10 year 4.000 11/15/12 4.01

30 year 5.375 2/15/31 4.92
4

Term Structure Calculations
contains notionals or face values of the bonds. (Note that bills have zero
coupons.)

Bonds = [datenum('04/17/2003') 0 100;
datenum('07/17/2003') 0 100;
datenum('12/31/2004') 0.0175 100;
datenum('11/15/2007') 0.03 100;
datenum('11/15/2012') 0.04 100;
datenum('02/15/2031') 0.05375 100];

Then specify the corresponding yields.

Yields = [0.0115;
0.0118;
0.0168;
0.0297;
0.0401;
0.0492];

You are now ready to compute the spot curve for each of these six maturities.
The spot curve is based upon a settlement date of January 17, 2003.

Settle = datenum('17-Jan-2003');
[ZeroRates, CurveDates] = zbtyield(Bonds, Yields, Settle)

This gets you the Treasury spot curve for the day.

You can compute the forward curve from this spot curve with zero2fwd.

[ForwardRates, CurveDates] = zero2fwd(ZeroRates, CurveDates, ...
Settle)

Here the notion of forward rates refers to rates between the maturity dates
shown above, not to a certain period (forward three-month rates, for example).
2-15

2 Debt Instruments

2-1
Computing Spreads
Calculating the spread between specific, fixed forward periods (such as the
Treasury-Eurodollar spread) requires an extra step. Interpolate the zero rates
(or zero prices, instead) for the corresponding maturities on the interval dates.
Then use the interpolated zero rates to deduce the forward rates, and thus the
spread of Eurodollar forward curve segments versus the relevant forward
segments from Treasury bills.

Additionally, the variety of curve functions (including zero2fwd) helps to
standardize such calculations. For instance, by making both rates quoted with
quarterly compounding and on an actual/360 basis, the resulting spread
structure is fully comparable. This avoids the small inconsistency that occurs
when directly comparing the bond-equivalent yield of a Treasury bill to the
quarterly forward rates implied by Eurodollar futures.
6

Term Structure Calculations
Noise in Curve Computations
When introducing more bonds in constructing curves, noise may become a
factor and may need some “smoothing” (with splines, for example). This will
help obtain a smoother forward curve.

The following spot and forward curves are constructed from 67 Treasury bonds.
The fitted and bootstrapped spot curve (bottom right figure) displays
comparable stability. The forward curve (upper left figure) contains significant
noise and shows an improbable forward rate structure. The noise is not
necessarily bad; it could uncover trading opportunities for a relative-value
approach. Yet, a more balanced approach is certainly desired when the
bootstrapped forward curve oscillates this much and contains a negative rate
as large as -10% (not shown in the plot because it is outside the limits).
2-17

2 Debt Instruments

2-1
This example uses termfit, a demonstration function from the Financial
Toolbox that also requires the use of the Spline Toolbox.

Implied Forward Curves.

Implied Spot Rate Curves.

The jagged curve comes
from direct bootstrapping.
The smooth curve shows
the effect of smoothing

These curves correspond to
the forward curve above.

with splines.
8

3

Derivative Securities

Pricing and Hedging (p. 3-2) Describes the pricing of Eurodollar-based swaps and
portfolio hedging.

Convertible Bond Valuation (p. 3-10) Illustrates a binomial or trinomial tree approach to value
convertible bonds.

Treasury Bond Futures (p. 3-12) Describes the computation of Treasury futures conversion
factors and theoretical Treasury futures prices.

3 Derivative Securities

3-2
Pricing and Hedging
The Fixed-Income Toolbox contains functions that perform swap pricing and
portfolio hedging.

Swap Pricing Assumptions
The Fixed-Income Toolbox contains the function liborfloat2fixed, which
computes a fixed-rate par yield that equates the floating-rate side of a swap to
the fixed-rate side. The solver sets the present value of the fixed side to the
present value of the floating side without having to line up and compare fixed
and floating periods.

Assumptions on Floating-Rate Input

• Rates are quarterly, for example, that of Eurodollar futures.

• Effective date is the first third Wednesday after the settlement date.

• All delivery dates are spaced three months apart.

• All periods start on the third Wednesday of delivery months.

• All periods end on the same dates of delivery months, three months after the
start dates.

• Accrual basis of floating rates is actual/360.

• Applicable forward rates are estimated by interpolation in months when
forward-rate data is not available.

Assumptions on Fixed-Rate Output

• Design allows you to create a bond of any coupon, basis, or frequency, based
upon the floating-rate input.

• The start date is a valuation date, that is, a date when an agreement to enter
into a contract by the settlement date is made.

• Settlement can be on or after the start date. If it is after, a forward fixed-rate
contract results.

• Effective date is assumed to be the first third Wednesday after settlement,
the same date as that of the floating rate.

• The end date of the bond is a designated number of years away, on the same
day and month as the effective date.

Pricing and Hedging
• Coupon payments occur on anniversary dates. The frequency is determined
by the period of the bond.

• Fixed rates are not interpolated. A fixed-rate bond of the same present value
as that of the floating-rate payments is created.

Swap Pricing Example
This example demonstrates the use of the functions in computing the fixed rate
applicable to a series of 2-, 5-, and 10-year swaps based on Eurodollar market
data. According to the Chicago Mercantile Exchange (http://www.cme.com),
Eurodollar data on Friday, October 11, 2002, was as shown in the table below.

Note This example illustrates swap calculations in MATLAB. Timing of the
data set used was not rigorously examined and was assumed to be the proxy
for the swap rate reported on October 11, 2002.

Eurodollar Data on Friday, October 11, 2002

Month Year Settle

10 2002 98.21

11 2002 98.26

12 2002 98.3

1 2003 98.3

2 2003 98.31

3 2003 98.275

6 2003 98.12

9 2003 97.87

12 2003 97.575

3 2004 97.26
3-3

3 Derivative Securities

3-4
6 2004 96.98

9 2004 96.745

12 2004 96.515

3 2005 96.33

6 2005 96.135

9 2005 95.955

12 2005 95.78

3 2006 95.63

6 2006 95.465

9 2006 95.315

12 2006 95.16

3 2007 95.025

6 2007 94.88

9 2007 94.74

12 2007 94.595

3 2008 94.48

6 2008 94.375

9 2008 94.28

12 2008 94.185

3 2009 94.1

6 2009 94.005

9 2009 93.925

Eurodollar Data on Friday, October 11, 2002 (Continued)

Month Year Settle

Pricing and Hedging
Using this data, you can compute 1-, 2-, 3-, 4-, 5-, 7-, and 10-year swap rates
with the toolbox function liborfloat2fixed. The function requires you to
input only Eurodollar data, the settlement date, and tenor of the swap.
MATLAB then performs the required computations.

To illustrate how this function works, first load the data contained in the
supplied Excel worksheet EDdata.xls.

[EDRawData, textdata] = xlsread('EDdata.xls');

Extract the month from the first column and the year from the second column.
The rate used as proxy is the arithmetic average of rates on opening and
closing.

Month = EDRawData(:,1);
Year = EDRawData(:,2);
IMMData = (EDRawData(:,4)+EDRawData(:,6))/2;
EDFutData = [Month, Year, IMMData];

12 2009 93.865

3 2010 93.82

6 2010 93.755

9 2010 93.7

12 2010 93.645

3 2011 93.61

6 2011 93.56

9 2011 93.515

12 2011 93.47

3 2012 93.445

6 2012 93.41

9 2012 93.39

Eurodollar Data on Friday, October 11, 2002 (Continued)

Month Year Settle
3-5

3 Derivative Securities

3-6
Next, input the current date.

Settle = datenum('11-Oct-2002');

To compute for the two-year swap rate, set the tenor to 2.

Tenor = 2;

Finally, compute the swap rate with liborfloat2fixed.

[FixedSpec, ForwardDates, ForwardRates] = ...
liborfloat2fixed(EDFutData, Settle, Tenor)

MATLAB returns a par-swap rate of 2.23% using the default setting (quarterly
compounding and 30/360 accrual), and forward dates and rates data (quarterly
compounded), comparable to 2.17% of Friday’s average broker data in Table
H15 of Federal Reserve Statistical Release
(http://www.federalreserve.gov/releases/h15/update/).

FixedSpec =

Coupon: 0.0223
Settle: '16-Oct-2002'

Maturity: '16-Oct-2004'
Period: 4
Basis: 1

ForwardDates =

 731505
 731596
 731687
 731778
 731869
 731967
 732058
 732149

ForwardRates =

 0.0179
 0.0170
 0.0177

Pricing and Hedging
 0.0196
 0.0222
 0.0255
 0.0285
 0.0311

In the FixedSpec output, note that the swap rate actually goes forward from
the third Wednesday of October 2002 (October 16, 2002), five days after the
original Settle input (October 11, 2002). This, however, is still the best proxy
for the swap rate on Settle, as the assumption merely starts the swap’s
effective period and does not affect its valuation method or its length.

The correction suggested by Hull and White improves the result by turning on
convexity adjustment as part of the input to liborfloat2fixed. (See Hull, J.,
Options, Futures, and Other Derivatives, 4th Edition, Prentice-Hall, 2000.) For
a long swap, e.g., five years or more, this correction could prove to be
substantial.

The adjustment requires additional parameters:

• StartDate, which you make the same as Settle (the default) by providing an
empty matrix [] as input.

• ConvexAdj to tell liborfloat2fixed to perform the adjustment.

• RateParam, which provides the parameters a and S as input to the
Hull-White short rate process.

• Optional parameters InArrears and Sigma, for which you can use empty
matrices [] to accept the MATLAB defaults.

• FixedCompound, with which you can facilitate comparison with values cited
in Table H15 of Federal Reserve Statistical Release by turning the default
quarterly compounding into semiannual compounding, with the (default)
basis of 30/360.

StartDate = [];
Interpolation = [];
ConvexAdj = 1;
RateParam = [0.03; 0.017];
FixedCompound = 2;
[FixedSpec, ForwardDaates, ForwardRates] = ...
liborfloat2fixed(EDFutData, Settle, Tenor, StartDate, ...
Interpolation, ConvexAdj, RateParam, [], [], FixedCompound)
3-7

3 Derivative Securities

3-8
This returns 2.21% as the two-year swap rate, quite close to the reported swap
rate for that date.

Analogously, the table below summarizes the solutions for 1-, 3-, 5-, 7-, and
10-year swap rates (convexity-adjusted and unadjusted).

Portfolio Hedging
You can use these results further, such as for hedging a portfolio. The
liborduration function provides a duration-hedging capability. You can
isolate assets (or liabilities) from interest-rate risk exposure with a swap
arrangement.

Suppose you own a bond with these characteristics:

• $100 million face value

• 7% coupon paid semiannually

• 5% yield to maturity

• Settlement on October 11, 2002

• Maturity on January 15, 2010

• Interest accruing on an actual/365 basis

Calculated and Market Average Data of Swap Rates on Friday, October 11,
2002

Swap
Length
(years)

Unadjusted Adjusted Table H15 Adjusted Error
(basis points)

1 1.80% 1.79% 1.80% -1

2 2.24% 2.21% 2.22% -1

3 2.70% 2.66% 2.66% 0

4 3.12% 3.03% 3.04% -1

5 3.50% 3.37% 3.36% +1

7 4.16% 3.92% 3.89% +3

10 4.87% 4.42% 4.39% +3

Pricing and Hedging
Use of the bnddury function from the Financial Toolbox shows a modified
duration of 5.6806 years.

To immunize this asset, you can enter into a pay-fixed swap, specifically a swap
in the amount of notional principal (Ns) such that
Ns*SwapDuration + $100M*5.6806 = 0 (or Ns = -100*5.6806/SwapDuration).

Suppose again, you choose to employ a 5-, 7-, or 10-year swap (3.37%, 3.92%,
and 4.42% from the previous table) as your hedging tool.

SwapFixRate = [0.0337; 0.0392; 0.0442];
Tenor = [5; 7; 10];
Settle = '11-Oct-2002';
PayFixDuration = liborduration(SwapFixRate, Tenor, Settle)

This gives a duration of -3.6835, -4.7307, and -6.0661 years for 5-, 7-, and
10-year swaps. The corresponding notional amount is computed by

Ns = -100*5.6806./PayFixDuration

Ns =

 154.2163
 120.0786
 93.6443

The notional amount entered in pay-fixed side of the swap instantaneously
immunizes the portfolio.
3-9

3 Derivative Securities

3-1
Convertible Bond Valuation
A convertible bond (CB) is a debt instrument that can be converted into a
predetermined amount of a company’s equity at certain times prior to the
bond’s maturity.

The Fixed-Income Toolbox uses a binomial and trinomial tree approach
(cbprice) to value convertible bonds. The value of a convertible bond is
determined by the uncertainty of the related stock. Once the stock evolution is
modeled, backwards discounting is computed.

The last column of such trees provides the data to decide which is more
profitable: the debt notional (plus interest, if any) or the equivalent number of
shares per the notional.

Where debt prevails, the toolbox discounts backward with the risk-free rate
plus the spread reflecting the credit risk of issuer. Where stock prevails, the
toolbox discounts with the risk free rate. The intrinsic value of a convertible
bond is the sum of the (probability-adjusted) debt and stock portions from the
last node. This is compared with current stock price, to see if voluntary or
forced conversion may take place. Otherwise, its value is the intrinsic value.
From here, the same discounting process is repeated after adjusting debt
portion to be equal to zero if any conversion takes place. Dividends and coupons
are handled discretely, at the date they occur.

The approach is equivalent to solving a one-dimensional partial differential
equation such as one described by Tsiveriotis and Fernandes. (See Tsiveriotis,
K. and C. Fernandes (1998), “Valuing Convertible Bonds with Credit Risk,” The
Journal of Fixed Income, 8 (3), 95 - 102.) Using the same example of bond
specifications that they use (4% annual coupon, payable twice a year, callable
after two years at 110, and redeemable at par in five years), the toolbox gives
results similar to theirs.
0

Convertible Bond Valuation
The figure on the left shows the bond “floor” of the convertible (a 5% yield, given
a 4% coupon at about 97% par) when share prices are very low.

The change of curvature located at the end of the second year is due to the
activation of the embedded (soft) call feature (visible on the surface plot in the
right figure).

Finally, there is the flat section when time is nearing expiration and share
prices are high, indicating a delta of unity, a characteristic of in-the-money
equity options embedded in a bond.

3-11

3 Derivative Securities

3-1
Treasury Bond Futures
The Fixed-Income Toolbox also provides new functions that compute Treasury
futures conversion factors and theoretical Treasury futures prices.

Theoretical Prices
This example shows how you can provide an input of eligible bonds and obtain
its conversion factor to a 6% coupon rate (or against any other desired coupon
rate). The example assumes no knowledge of the repo rate and instead uses the
spot curve as the funding rate (tfutbyprice and tfutbyyield).

RefDate = [datenum('1-Dec-2002');
datenum('1-Mar-2003');
datenum('1-Jun-2003');
datenum('1-Sep-2003');
datenum('1-Dec-2003');
datenum('1-Sep-2003');
datenum('1-Dec-2002');
datenum('1-Jun-2003')];

Maturity = [datenum('15-Nov-2012');

datenum('15-Aug-2012');
datenum('15-Feb-2012');
datenum('15-Feb-2011');
datenum('15-Aug-2011');
datenum('15-Aug-2010');
datenum('15-Aug-2009');
datenum('15-Feb-2010')];

CouponRate = [0.04; 0.04375; 0.04875; 0.05;

0.05; 0.0575; 0.06; 0.065];

CF = convfactor(RefDate, Maturity, CouponRate)

CF =

 0.8539
 0.8858
 0.9259
2

Treasury Bond Futures
 0.9418
 0.9403
 0.9862
 1.0000
 1.0266

The results can be checked against the Chicago Board of Trade
(http://www.cbot.com) 10-year futures contract table.

This computation can be incorporated into other functions that use conversion
factors, such as routines to find the cheapest-to-deliver bonds. This is also
equivalent to calculating the theoretical price of a particular set of bond futures
prices.

A Treasury spot curve is necessary to discount the issue properly. MATLAB
takes into account the actual/actual accrual basis and any intermittent
coupons between the settlement and delivery dates. You can generate the spot
curve using any set of Treasury bonds as long as the bonds cover the entire life
of the futures in question.

Coupon Issue
Date

Maturity
Date

6% Conversion Factors

Dec-02 Mar-03 Jun-03 Sep-03 Dec-03 Mar-04

4.00 11/15/02 11/15/12 0.8539 0.8568 0.8595 0.8625 0.8653 0.8683

4 3/8 08/15/02 08/15/12 0.8836 0.8858 0.8883 0.8905 0.893 0.8954

4 7/8 02/15/02 02/15/12 0.9226 0.9242 0.9259 0.9275 0.9293 0.931

5 02/15/01 02/15/11 0.9372 0.9386 0.9403 0.9418 0.9435 0.9451

5 08/15/01 08/15/11 0.9342 0.9356 0.9372 0.9386 0.9403 0.9418

5 1/2 05/17/99 05/15/09 --- --- --- --- --- ---

5 3/4 08/15/00 08/15/10 0.9851 0.9854 0.9859 0.9862 0.9867 ---

6 08/16/99 08/15/09 1 --- --- --- --- ---

6 1/2 02/15/00 02/15/10 1.0282 1.0273 1.0266 --- --- ---
3-13

3 Derivative Securities

3-1
% Computing the reference spot curve.
 Bonds = [datenum('02/13/2003'), 0;

datenum('05/15/2003'), 0;
datenum('10/31/2004'), 0.02125;
datenum('11/15/2007'), 0.03;
datenum('11/15/2012'), 0.04;
datenum('02/15/2031'), 0.05375];

Yields = [1.20; 1.25; 1.86; 2.99; 4.02; 4.93] / 100;

Settle = datenum('11/15/2002');

[ZeroRates, CurveDates] = ...
 zbtyield(Bonds, Yields, Settle);

% Computing theoretical futures T-bonds price.
SpotCurve = [CurveDates, ZeroRates];
RefDate = [datenum('1-Dec-2002'); datenum('1-Mar-2003')];
MatFut = [datenum('15-Dec-2002'); datenum('15-Mar-2003')];
Maturity = [datenum('15-Aug-2009'); datenum('15-Aug-2010')];
CouponRate = [0.06;0.0575];
CF = convfactor(RefDate, Maturity, CouponRate);
Price = [114.416; 113.171];
Interpolation = 1;

QtdFutPrice = tfutbyprice(SpotCurve, Price, Settle, ...
 MatFut, CF, CouponRate, Maturity, Interpolation)

QtdFutPrice =

 113.8129
 112.4986

These quoted prices for December 2002 and March 2003 are comparable with
futures prices of 113.93 and 112.68 traded that same hour at the Chicago Board
of Trade. Without a live data feed, the data timings are asynchronous, but the
results compare favorably for illustration purposes. These methods are well
documented (such as in Hull 2000) and require some assumptions about the
intended delivery date. Because of the short-term maturities on most bond
futures, no convexity adjustment is usually needed.
4

Treasury Bond Futures
When you know the repo rate, you can calculate theoretical prices with
tfutpricebyrepo or tfutyieldbyrepo. Effectively, the known repo rate
substitutes for the segment of the spot curve between the settlement and
delivery dates.

Implied Repo
Alternatively, you can calculate the cheapest-to-deliver (CTD) bonds by
comparing the repo rates implied by bond current and future prices. A
higher-cost bond, obviously, is not a candidate for the CTD bond, and vice
versa.

Within a low-yield environment, you would like to compare implied repos on
two bonds on the extremes of a deliverable three-month contract for 10-year
Treasury bonds. You expect that the CTD bond has a higher coupon and
shorter maturity, and that this bond implies lower funding cost.

For example, two bonds on the extremes are a 6.5% coupon maturing February
15, 2010, and a 3.875% coupon maturing February 15, 2013. You would expect
the 6.5% to be significantly cheaper to deliver as implied by its lower funding
rate. The price of the 6.5% is 118.439, and price of the 3.875% is 99.601.

Quoted futures price for June 2003 is 113.9219 (113-295). Today is March 27,
2003, and you intend to deliver on June 27, 2003 (92 days repo). There are no
coupons to reinvest during this period.

The code that provides this information to the toolbox tfutimprepo function is

ReinvestData = [0.025 3];
Price = [118.300;

99.601];
QtdFutPrice = [113.9219;

113.9219];
Settle = datenum('03/27/2003');
MatFut = [datenum('27-Jun-2003');

datenum('27-Jun-2003')];
CF = [1.0266;

0.8478];
CouponRate = [0.06500;

0.03875];
Maturity = [datenum('15-Feb-2010');

datenum('15-Feb-2013')];
3-15

3 Derivative Securities

3-1
ImpliedRepo = tfutimprepo(ReinvestData, Price, QtdFutPrice, ...
Settle, MatFut, CF, CouponRate, Maturity)

ImpliedRepo =

 0.0100
 -0.0795

This result confirms that the CTD bond is indeed the 6.5% February 2010 bond,
as it has the higher implied repo (ignoring transaction cost) before arbitrage
can occur. The implied repo in MATLAB is always returned on an actual/360
accrual basis.

Remember that this data is likely to be asynchronous and is useful for
illustration purpose only.

Hedge Parameters
Treasury futures hedge parameters are frequently measured with DV01, the
dollar value when there is a one-basis-point shift. This is easily calculated by
computing the duration of the underlying bond for the contract (the CTD bond),
dividing it by its conversion factor, and multiplying it by its cash price. Use
bnddurp and bnddury from the Financial Toolbox to compute modified
durations of fixed-coupon bonds. Again, the facility provided by the Treasury
bond futures functions easily leverages such tasks and lets you focus on more
qualitative assessment of your routines.
6

4

Function Reference

Functions — Categorical List (p. 4-2) Toolbox functions grouped by the type of operation they
perform.

Functions — Alphabetical List (p. 4-5) Toolbox functions listed in alphabetic order.

4 Function Reference

4-2
Functions — Categorical List

Cash Flows

Certificates of Deposit

Convertible Bonds

Derivative Securities

Mortgage-Backed Securities

cfamounts Cash flow and time mapping for bond portfolio

cdai Accrued interest on a certificate of deposit

cdprice Price a certificate of deposit

cdyield Yield on a certificate of deposit

cbprice Price a convertible bond

bkcall Price European call option on bonds using Black’s model

bkcaplet Price an interest rate caplet using Black’s model

bkfloorlet Price an interest rate floorlet using Black’s model

bkput Price European put option on bonds using Black’s model

liborduration Duration of a LIBOR-based interest rate swap

liborfloat2fixed Compute par fixed-rate of swap given three-month
LIBOR data

liborprice Price a swap given the swap rate

mbscfamounts Cash flow and time mapping for mortgage pool

mbsconvp Convexity of mortgage pool given price

mbsconvy Convexity of mortgage pool given yield

Functions — Categorical List
Option Adjusted Spread Computations

Stepped Coupon Bonds

mbsdurp Duration of mortgage pool given price

mbsdury Duration of mortgage pool given yield

mbsnoprepay End-of-month cash flows and balances without
prepayment

mbspassthrough Mortgage pool cash flows and balances with prepayment

mbsprice Mortgage-backed security price given yield

mbsprice2speed Implied PSA prepayment speeds given price

mbswal Weighted average life of a mortgage pool

mbsyield Mortgage-backed security yield given price

mbsyield2speed Implied PSA prepayment speeds given yield

psaspeed2default Benchmark default

mbsoas2price Price given an option-adjusted spread

mbsoas2yield Yield given an option-adjusted spread

mbsprice2oas Option-adjusted spread given price

mbsyield2oas Option-adjusted spread given yield

stepcpncfamounts Cash flow amounts and times for bonds with stepped
coupons

stepcpnprice Price a bond with stepped coupons

stepcpnyield Yield to maturity of a bond with stepped coupons
4-3

4 Function Reference

4-4
Treasury Bills

Treasury Bond Futures

Zero Coupon Instruments

tbilldisc2yield Convert Treasury bill discount to equivalent yield

tbillprice Price a Treasury bill

tbillrepo Break-even discount of repurchase agreement

tbillval01 Value of one basis point

tbillyield Yield on a Treasury bill

tbillyield2disc Convert a Treasury bill yield to equivalent discount

convfactor Treasury bond conversion factors

tfutbyprice Treasury bond future prices

tfutbyyield Treasury bond future yields

tfutpricebyrepo Theoretical futures bond price

tfutyieldbyrepo Theoretical futures bond yield

tfutimprepo Implied simple annual repurchase rate to prevent
arbitrage

zeroprice Price zero-coupon instruments given yield

zeroyield Yield of zero-coupon instruments given price

Functions — Alphabetical List

4-5

Functions — Alphabetical List 4

This section contains function reference pages listed alphabetically.

bkcall
4bkcall Purpose Price European call option on bonds using Black’s model

Syntax CallPrice = bkcall(Strike, ZeroData, Sigma, BondData, Settle,
Expiry, Period, Basis, EndMonthRule, InterpMethod,
StrikeConvention)

Arguments Strike Scalar or number of options (NOPT) by 1 vector of strike
prices.

ZeroData Two-column (optionally three-column) matrix containing
zero (spot) rate information used to discount future cash
flows.

First column: Serial maturity date associated with the
zero rate in the second column.

Second column: Annualized zero rates, in decimal form,
appropriate for discounting cash flows occurring on the
date specified in the first column. All dates must occur
after Settle (dates must correspond to future investment
horizons) and must be in ascending order.

Third column: (optional): Annual compounding
frequency. Values are 1 (annual), 2 (semiannual,
default), 3 (three times per year), 4 (quarterly),
6 (bimonthly), 12 (monthly), and -1 (continuous).

Sigma Scalar or NOPT- by-1 vector of annualized price volatilities
required by Black’s model.
4-6

bkcall
BondData Row vector with three (optionally four) columns or
NOPT-by-3 (optionally NOPT-by-4) matrix specifying
characteristics of underlying bonds in the form:

[CleanPrice CouponRate Maturity Face]

CleanPrice is the price excluding accrued interest.

CouponRate is the decimal coupon rate.

Maturity is the bond maturity date in serial date number
format.

Face is the face value of the bond. If unspecified, the face
value is assumed to be 100.

Settle Settlement date of the options. May be a serial date
number or date string. Settle also represents the
starting reference date for the input zero curve.

Expiry Scalar or NOPT-by-1 vector of option maturity dates. May
be a serial date number or date string.

Period (Optional) Number of coupons per year for the
underlying bond. Default = 2 (semiannual). Supported
values are 0, 1, 2, 3, 4, 6, and 12.

Basis (Optional) Day-count basis of the bond. A vector of
integers. 0 = actual/actual (default), 1 = 30/360 (SIA),
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA),
5 = 30/360 (ISDA), 6 = 30/360 (European),
7 = act/365 (Japanese).

EndMonthRule (Optional) End-of-month rule. This rule applies only
when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. 1 = set rule on (default),
meaning that a bond’s coupon payment date is always
the last actual day of the month.
4-7

bkcall
Description CallPrice = bkcall(Strike, ZeroData, Sigma, BondData, Settle,
Expiry, Period, Basis, EndMonthRule, InterpMethod,
StrikeConvention) using Black’s model, derives an NOPT-by-1 vector of prices
of European call options on bonds.

If cash flows occur beyond the dates spanned by ZeroData, the input zero curve,
the appropriate zero rate for discounting such cash flows is obtained by
extrapolating the nearest rate on the curve (i.e., if a cash flow occurs before the
first or after the last date on the input zero curve, a flat curve is assumed).

 Examples This example is based on example 22.1, page 512, of Hull. (See Reference
below.)

Consider a European call option on a bond maturing in 9.75 years. The
underlying bond has a clean price of $935, a face value of $1000, and pays 10%
semiannual coupons. Since the bond matures in 9.75 years, a $50 coupon will
be paid in three months and again in nine months. Also, assume that the
annualized volatility of the forward bond price is 9%. Furthermore, suppose the
option expires in 10 months and has a strike price of $1000, and that the
annualized continuously compounded risk-free discount rates for maturities of
3, 9, and 10 months are 9%, 9.5%, and 10%, respectively.

InterpMethod (Optional) Scalar integer zero curve interpolation
method. For cash flows that do not fall on a date found in
the ZeroData spot curve, indicates the method used to
interpolate the appropriate zero discount rate. Available
methods are (0) nearest, (1) linear, and (2) cubic.
Default = 1. See interp1 for more information.

StrikeConvention (Optional) Scalar or NOPT-by-1 vector of option contract
strike price conventions.

StrikeConvention = 0 defines the strike price as the
cash (dirty) price paid for the underlying bond.

StrikeConvention = 1 (default) defines the strike price
as the quoted (clean) price paid for the underlying bond.
The accrued interest of the bond at option expiration is
added to the input strike price when evaluating Black’s
model.
4-8

bkcall
% Specify the option information.
Settle = '15-Mar-2004';
Expiry = '15-Jan-2005'; % 10 months from settlement
Strike = 1000;
Sigma = 0.09;
Convention = [0 1]';

% Specify the interest rate environment.
ZeroData = [datenum('15-Jun-2004') 0.09 -1; % 3 months

datenum('15-Dec-2004') 0.095 -1; % 9 months
datenum(Expiry) 0.10 -1]; % 10 months

% Specify the bond information.
CleanPrice = 935;
CouponRate = 0.1;
Maturity = '15-Dec-2013'; % 9.75 years from settlement
Face = 1000;
BondData = [CleanPrice CouponRate datenum(Maturity) Face];
Period = 2;
Basis = 1;

% Call Black's model.
CallPrices = bkcall(Strike, ZeroData, Sigma, BondData, Settle,...
Expiry, Period, Basis, [], [], Convention)
CallPrices =

9.4873
7.9686

When the strike price is the dirty price (Convention = 0), the call option value
is $9.49. When the strike price is the clean price (Convention = 1), the call
option value is $7.97.

See Also bkput

References Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall, 5th
edition, 2003, pp. 287-288, 508-515.
4-9

bkcaplet
4bkcapletPurpose Price an interest rate caplet using Black’s model

Syntax CapPrices = bkcaplet(CapData, FwdRates, ZeroPrice, Settle,
StartDate, EndDate, Sigma)

Arguments

Description CapPrices = bkcaplet(CapData, FwdRates, ZeroPrice, Settle,
StartDate, EndDate, Sigma) computes the prices of interest rate caplets for
every $100 face value of principal.

CapData Number of caps (NCAP) by 2 matrix containing cap rates
and bases:

[CapRates Basis]

Values for bases may be 0 = actual/actual (default),
1 = 30/360, 2 = actual/360, 3 = actual/365.

FwdRates Scalar or NCAP-by-1 vector containing forward rates in
decimal. FwdRates accrue on the same basis as
CapRates.

ZeroPrice Scalar or NCAP-by-1 vector containing zero coupon prices
with maturities corresponding to those of each cap in
CapData, per $100 nominal value.

Settle Scalar or NCAP-by-1 vector of identical elements
containing settlement date of caplets.

StartDate Scalar or NCAP-by-1 vector containing start dates of the
caplets.

EndDate Scalar or NCAP-by-1 vector containing maturity dates of
caplets.

Sigma Scalar or NCAP-by-1 vector containing volatility of forward
rates in decimal, corresponding to each caplet.
4-10

bkcaplet
Examples Given a notional amount of $1,000,000, compute the value of a caplet on
October 15, 2002 that starts on October 15, 2003 and ends on January 15, 2004.

CapData = [0.08, 1];
FwdRates = 0.07;
ZeroPrice = 100*exp(-0.065*1.25);
Settle = datenum('15-Oct-2002');
BeginDates = datenum('15-Oct-2003');
EndDates = datenum('15-Jan-2004');
Sigma = 0.20;

Because the caplet is $100 notional, divide $1,000,000 by $100.

Notional = 1000000/100;

CapPrice = Notional*bkcaplet(CapData, FwdRates, ZeroPrice, ...
Settle, BeginDates, EndDates, Sigma)

CapPrice =

 519.0046

See Also bkfloorlet
4-11

bkfloorlet
4bkfloorletPurpose Price an interest rate floorlet using Black’s model

Syntax FloorPrices = bkfloorlet(FloorData, FwdRates, ZeroPrice, Settle,
StartDate, EndDate, Sigma)

Arguments

Description FloorPrices = bkfloorlet(FloorData, FwdRates, ZeroPrice, Settle,
StartDate, EndDate, Sigma) computes the prices of interest rate floorlets for
every $100 of notional value.

FloorData Number of floors (NFLR) by 2 matrix containing floor rates
and bases:

[FloorRate Basis]

Values for bases may be 0 = actual/actual (default),
1 = 30/360, 2 = actual/360, 3 = actual/365.

FwdRates Scalar or NFLR-by-1 vector containing forward rates in
decimal. FwdRates accrue on the same basis as
FloorRates.

ZeroPrice Scalar or NFLR-by-1 vector containing zero coupon prices
with maturities corresponding to those of each floor in
FloorData, per $100 nominal value.

Settle Scalar or NFLR-by-1 vector of identical elements
containing settlement date of floorlets.

StartDate Scalar or NFLR-by-1 vector containing start dates of the
floorlets.

EndDate Scalar or NFLR-by-1 vector containing maturity dates of
floorlets.

Sigma Scalar or NFLR-by-1 vector containing volatility of forward
rates in decimal, corresponding to each floorlet.
4-12

bkfloorlet
Examples Given a notional amount of $1,000,000, compute the value of a floorlet on
October 15, 2002 that starts on October 15, 2003 and ends on January 15, 2004.

FloorData = [0.08, 1];
FwdRates = 0.07;
ZeroPrice = 100*exp(-0.065*1.25);
Settle = datenum('15-Oct-2002');
BeginDates = datenum('15-Oct-2003');
EndDates = datenum('15-Jan-2004');
Sigma = 0.20;

% Because floorlet is $100 notional, divide $1,000,000 by $100.
Notional = 1000000/100;

FloorPrice = Notional*bkfloorlet(FloorData, FwdRates, ...
ZeroPrice, Settle, BeginDates, EndDates, Sigma)

FloorPrice =

 2823.91

See Also bkcaplet
4-13

bkput
4bkputPurpose Price European put option on bonds using Black’s model

Syntax PutPrice = bkput(Strike, ZeroData, Sigma, BondData, Settle, Expiry,
Period, Basis, EndMonthRule, InterpMethod, StrikeConvention)

Arguments Strike Scalar or number of options (NOPT) by 1 vector of strike
prices.

ZeroData Two-column (optionally three-column) matrix containing
zero (spot) rate information used to discount future cash
flows.

First column: Serial maturity date associated with the
zero rate in the second column.

Second column: Annualized zero rates, in decimal form,
appropriate for discounting cash flows occurring on the
date specified in the first column. All dates must occur
after Settle (dates must correspond to future investment
horizons) and must be in ascending order.

Third column: (optional): Annual compounding
frequency. Values are 1 (annual), 2 (semiannual,
default), 3 (three times per year), 4 (quarterly),
6 (bimonthly), 12 (monthly), and -1 (continuous).

Sigma Scalar or NOPT- by-1 vector of annualized price volatilities
required by Black’s model.
4-14

bkput
BondData Row vector with three (optionally four) columns or
NOPT-by-3 (optionally NOPT-by-4) matrix specifying
characteristics of underlying bonds in the form:

[CleanPrice CouponRate Maturity Face]

CleanPrice is the price excluding accrued interest.

CouponRate is the decimal coupon rate.

Maturity is the bond maturity date in serial date number
format.

Face is the face value of the bond. If unspecified, the face
value is assumed to be 100.

Settle Settlement date of the options. May be a serial date
number or date string. Settle also represents the
starting reference date for the input zero curve.

Expiry Scalar or NOPT-by-1 vector of option maturity dates. May
be a serial date number or date string.

Period (Optional) Number of coupons per year for the
underlying bond. Default = 2 (semiannual). Supported
values are 0, 1, 2, 3, 4, 6, and 12.

Basis (Optional) Day-count basis of the bond. A vector of
integers. 0 = actual/actual (default), 1 = 30/360 (SIA),
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA),
5 = 30/360 (ISDA), 6 = 30/360 (European),
7 = act/365 (Japanese).

EndMonthRule (Optional) End-of-month rule. This rule applies only
when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. 1 = set rule on (default),
meaning that a bond’s coupon payment date is always
the last actual day of the month.
4-15

bkput
Description PutPrice = bkput(Strike, ZeroData, Sigma, BondData, Settle, Expiry,
Period, Basis, EndMonthRule, InterpMethod, StrikeConvention) using
Black’s model, derives an NOPT-by-1 vector of prices of European put options on
bonds.

If cash flows occur beyond the dates spanned by ZeroData, the input zero curve,
the appropriate zero rate for discounting such cash flows is obtained by
extrapolating the nearest rate on the curve (i.e., if a cash flow occurs before the
first or after the last date on the input zero curve, a flat curve is assumed).

Examples This example is based on example 22.2, page 514, of Hull. (See Reference
below.)

Consider a European put option on a bond maturing in 10 years. The
underlying bond has a clean price of $122.82, a face value of $100, and pays 8%
semi-annual coupons. Also, assume the annualized volatility of the forward
bond yield is 20%.Furthermore, suppose the option expires in 2.25 years and
has a strike price of $115, and that the annualized continuously compounded
risk free zero (spot) curve is flat at 5%. For a hypothetical settlement date of
March 15, 2004, the following code illustrates the use of Black’s model to
duplicate the put prices in Example 22.2 of the Hull reference. In particular, it

InterpMethod (Optional) Scalar integer zero curve interpolation
method. For cash flows that do not fall on a date found in
the ZeroData spot curve, indicates the method used to
interpolate the appropriate zero discount rate. Available
methods are (0) nearest, (1) linear, and (2) cubic.
Default = 1. See interp1 for more information.

StrikeConvention (Optional) Scalar or NOPT-by-1 vector of option contract
strike price conventions.

StrikeConvention = 0 defines the strike price as the
cash (dirty) price paid for the underlying bond.

StrikeConvention = 1 (default) defines the strike price
as the quoted (clean) price paid for the underlying bond.
The accrued interest of the bond at option expiration is
added to the input strike price when evaluating Black’s
model.
4-16

bkput
illustrates how to convert a broker’s yield volatility to a price volatility suitable
for Black’s model.

% Specify the option information.
Settle = '15-Mar-2004';
Expiry = '15-Jun-2006'; % 2.25 years from settlement
Strike = 115;
YieldSigma = 0.2;
Convention = [0; 1];

% Specify the interest rate environment. Since the
% zero curve is flat, interpolation into the curve always returns
% 0.05. Thus, the following curve is not unique to the solution.
ZeroData = [datenum('15-Jun-2004') 0.05 -1;

datenum('15-Dec-2004') 0.05 -1;
datenum(Expiry) 0.05 -1];

% Specify the bond information.
CleanPrice = 122.82;
CouponRate = 0.08;
Maturity = '15-Mar-2014'; % 10 years from settlement
Face = 100;
BondData = [CleanPrice CouponRate datenum(Maturity) Face];
Period = 2; % semiannual coupons
Basis = 1; % 30/360 day-count basis

% Convert a broker's yield volatility quote to a price volatility
% required by Black's model. To duplicate Example 22.2 in Hull,
% first compute the periodic (semiannual) yield to maturity from
% the clean bond price.
Yield = bndyield(CleanPrice, CouponRate, Settle, Maturity,...
Period, Basis);

% Compute the duration of the bond at option expiration. Most
% fixed-income sensitivity analyses use the modified duration
% statistic to examine the impact of small changes in periodic
% yields on bond prices. However, Hull's example operates in
% continuous time (annualized instantaneous volatilities and
% continuously compounded zero yields for discounting coupons).
4-17

bkput
% To duplicate Hull's results, use the second output of BNDDURY,
% the Macaulay duration.
[Modified, Macaulay] = bnddury(Yield, CouponRate, Expiry,...
Maturity, Period, Basis);

% Convert the yield-to-maturity from a periodic to a
% continuous yield.
Yield = Period .* log(1 + Yield./Period);

% Finally, convert the yield volatility to a price volatility via
% Hull's Equation 22.6 (page 514).
PriceSigma = Macaulay .* Yield .* YieldSigma;

% Finally, call Black's model.
PutPrices = bkput(Strike, ZeroData, PriceSigma, BondData,...
Settle, Expiry, Period, Basis, [], [], Convention)
PutPrices =

 1.7838
 2.4071

When the strike price is the dirty price (Convention = 0), the call option value
is $1.78. When the strike price is the clean price (Convention = 1), the call
option value is $2.41.

See Also bkcall

References Hull, John C., Options, Futures, and Other Derivatives, Prentice Hall, 5th
edition, 2003, pp. 287-288, 508-515.
4-18

cbprice
4cbpricePurpose Price a convertible bond

Syntax [CBMatrix, UndMatrix, DebtMatrix, EqtyMatrix] =
cbprice(RiskFreeRate, StaticSpread, Sigma, Price, ConvRatio,
NumSteps, IssueDate, Settle, Maturity, CouponRate, Period, Basis,
EndMonthRule, DividendType, DividendInfo, CallType, CallInfo,
TreeType)

Arguments RiskFreeRate Annual yield of risk-free bond with the same maturity as
the convertible, compounded continuously.
(Recommended value is the yield of a risk-free bond
with the same maturity as the convertible.)

StaticSpread Value of constant spread to the risk free rate.
Adding this to the RiskFreeRate produces the issuer's
yield, which reflects its credit risk.

Sigma Annual volatility in decimal.

Price Price of asset at settlement or valuation date.

ConvRatio Scalar. Number of assets convertible to a single bond.

NumSteps Number of steps in binomial tree.

IssueDate Issue date of bond.

Settle Settlement date of bond.

Maturity Maturity date of bond.

CouponRate Coupon rate payable per unit of face value.

Period (Optional) Number of coupons per year (1 to 4).

Basis (Optional) Scalar value for day-count basis of the
instrument. 0 = actual/actual (default), 1 = 30/360 (SIA),
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA),
5 = 30/360 (ISDA), 6 = 30/360 (European),
7 = act/365 (Japanese).
4-19

cbprice
All inputs are scalars except for DividendInfo and CallInfo.

Description [CBMatrix, UndMatrix, DebtMatrix, EqtyMatrix] =
cbprice(RiskFreeRate, StaticSpread, Sigma, Price, ConvRatio,
NumSteps, IssueDate, Settle, Maturity, CouponRate, Period, Basis,
EndMonthRule, DividendType, DividendInfo, CallType, CallInfo,
TreeType) computes the price of a convertible bond using a
Cox-Ross-Rubenstein binomial tree or, optionally, a trinomial tree.

CBMatrix is a matrix of convertible bond prices.

UndMatrix is a matrix of stock prices in binomial format.

DebtMatrix is a matrix of the debt portion of the convertible bond.

EqtyMatrix is a matrix of the equity portion of the convertible bond.

EndMonthRule (Optional) End-of-month rule. This rule applies only
when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. 1 = set rule on (default),
meaning that a bond’s coupon payment date is always
the last actual day of the month.

DividendType (Optional). 0 = dollar dividend (default). 1 = dividend
yield.

DividendInfo (Optional) Two-column matrix of dividend information.
First column contains the ex-dividend date corresponding
to the amount in the second column. Default = no
dividend.

CallType 0 = call on cash price (default). 1 = call on clean price.

CallInfo (Optional) Two-column matrix of call information. First
column contains the call dates. Second column contains
call prices for every $100 face of bond. A call in the
amount of call prices is activated after the corresponding
call date. Default = no call feature.

TreeType (Optional) 0 = binomial tree (default). 1 = trinomial tree.
4-20

cbprice
Examples Perform a spread effect analysis of a 4%-coupon convertible bond callable at
110 at end of second year, maturing at par in five years, with yield to maturity
of 5% and spread (of YTM versus 5-year treasury) of 0, 50, 100, and 150 basis
points. The underlying stock pays no dividend.

RiskFreeRate = 0.05;
Sigma = 0.3;
ConvRatio = 1;
NumSteps = 200;
IssueDate = datenum('2-Jan-2002');
Settle = datenum('2-Jan-2002');
Maturity = datenum('2-Jan-2007');
CouponRate = 0.04;
Period = 2;
Basis = 1;
EndMonthRule = 1;
DividendType = 0;
DividendInfo = [];
CallInfo = [datenum('2-Jan-2004') , 110];
CallType = 1;
TreeType = 1;

% Nested loop accross prices and static spread dimensions
% to compute convetible prices.

for j = 0:0.005:0.015;
StaticSpread = j;
 for i = 0:10:100
 Price = 40+i;
 [CbMatrix, UndMatrix, DebtMatrix, EqtyMatrix] = ...
 cbprice(RiskFreeRate, StaticSpread, Sigma, Price, ...
 ConvRatio, NumSteps, IssueDate, Settle, ...
 Maturity, CouponRate, Period, Basis, EndMonthRule, ...
 DividendType, DividendInfo, CallType, CallInfo, TreeType);

 convprice(i/10+1,j*200+1) = CbMatrix(1,1);
 stock(i/10+1,j*200+1) = Price;
 end
end

4-21

cbprice
 plot(stock, convprice);
 legend({'+0 bp'; '+50 bp'; '+100 bp'; '+150 bp'});
 title ('Effect of Spread using Trinomial tree - 200 steps')
 xlabel('Stock Price');
 ylabel('Convertible Price');
 text(50, 150, ['Coupon 4% semiannual.', sprintf('\n'), ...
 '110 Call-on-clean after two years.' sprintf('\n'), ...
 'Maturing at par in five years.'],'fontweight','Bold')

4-22

cdai
4cdaiPurpose Accrued interest on certificate of deposit (CD)

Syntax AccrInt = cdai(CouponRate, Settle, Maturity, IssueDate, Basis)

Arguments

Each required input must be a number of certificates of deposit (NCDS) by 1 or
1-by-NCDS conforming vector or scalar. The optional Basis argument may be
either a NCDS-by-1 or a 1-by-NCDS vector, a scalar, or the empty matrix ([]).

Description AccrInt = cdai(CouponRate, Settle, Maturity, IssueDate, Basis)
computes the accrued interest on a certificate of deposit.

AccrInt represents the accrued interest per $100 of face value.

This function assumes that the certificates of deposit pay interest at maturity.
Because of the simple interest treatment of these securities, the functions is
best used for short term maturities (less than one year). The default simple
interest calculation is the actual/360 convention (SIA).

CouponRate Annual interest rate in decimal.

Settle Settlement date. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date.

IssueDate Issue date.

Basis (Optional) Day-count basis of the instrument.
2 = actual/360 (default), 3 = actual/365. These are the
only bases allowable for certificates of deposit.
4-23

cdai
Examples Given a certificate of deposit (CD) with these characteristics, compute the
accrued interest due on the CD.

CouponRate = 0.05;
Settle = '02-Jan-02';
Maturity = '31-Mar-02';
IssueDate = '1-Oct-01';

AccrInt = cdai(CouponRate, Settle, Maturity, IssueDate)

AccrInt =

 1.2917

See Also accrfrac, bndyield, stepcpnyield, tbillyield, zeroyield
4-24

cdprice
4cdpricePurpose Price a certificate of deposit (CD)

Syntax [Price, AccrInt] = cdprice(Yield, CouponRate, Settle, Maturity,
IssueDate, Basis)

Arguments

Each required input must be a number of certificates of deposit (NCDS) by 1 or
1-by-NCDS conforming vector or scalar. The optional Basis argument may be
either a NCDS-by-1 or a 1-by-NCDS vector, a scalar, or the empty matrix ([]).

Description [Price, AccrInt] = cdprice(Yield, CouponRate, Settle, Maturity,
IssueDate, Basis) computes the price of a certificate of deposit given its
yield.

Price is the clean price of the CD per $100 of face value.

AccruedInt is the accrued interest payable at settlement per unit of face value.

This function assumes that the certificates of deposit pay interest at maturity.
Because of the simple interest treatment of these securities, the function is best
used for short term maturities (less than one year). The default simple interest
calculation is the actual/360 convention (SIA).

Yield Simple yield to maturity over the basis denominator.

CouponRate Coupon interest rate in decimal.

Settle Settlement date. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date.

IssueDate Issue date.

Basis (Optional) Day-count basis of the instrument.
2 = actual/360 (default), 3 = actual/365. These are the
only bases allowable for certificates of deposit.
4-25

cdprice
Examples Given a certificate of deposit (CD) with these characteristics, compute the price
of the CD and the accrued interest due on the settlement date.

Yield = 0.0525;
CouponRate = 0.05;
Settle = '02-Jan-02';
Maturity = '31-Mar-02';
IssueDate = '1-Oct-01';

[Price, AccruedInt] = cdprice(Yield, CouponRate, Settle, ...
Maturity, IssueDate)

Price =

 99.9233

AccruedInt =

 1.2917

See Also bndprice, cdai, cdyield, stepcpnprice, tbillprice
4-26

cdyield
4cdyieldPurpose Yield on certificate of deposit (CD)

Syntax Yield = cdyield(Price, CouponRate, Settle, Maturity, IssueDate,
Basis)

Arguments

Each required input must be a number of certificates of deposit (NCDS) by 1 or
1-by-NCDS conforming vector or scalar. The optional Basis argument may be
either a NCDS-by-1 or a 1-by-NCDS vector, a scalar, or the empty matrix ([]).

Description Yield = cdyield(Price, CouponRate, Settle, Maturity, IssueDate,
Basis) computes the yield to maturity of a certificate of deposit given its clean
price.

This function assumes that the certificates of deposit pay interest at maturity.
Because of the simple interest treatment of these securities, the functions is
best used for short term maturities (less than one year). The default simple
interest calculation is the actual/360 convention (SIA).

Price Clean price of the certificate of deposit per $100 face. If
you have a vector of dirty or cash prices of CDs, compute
the accrued interest portion using cdai.

CouponRate Annual interest rate in decimal.

Settle Settlement date. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date.

IssueDate Issue date.

Basis (Optional) Day-count basis of the instrument.
2 = actual/360 (default), 3 = actual/365. These are the
only bases allowable for certificates of deposit.
4-27

cdyield
Examples Given a certificate of deposit (CD) with these characteristics, compute the yield
on the CD.

Price = 101.125;
CouponRate = 0.05;
Settle = '02-Jan-02';
Maturity = '31-Mar-02';
IssueDate = '1-Oct-01';

Yield = cdyield(Price, CouponRate, Settle, Maturity, IssueDate)

Yield =

 0.0039

See Also bndprice, cdai, cdprice, stepcpnprice, tbillprice
4-28

cfamounts
4cfamountsPurpose Cash flow and time mapping for bond portfolio

Syntax [CFlowAmounts, CFlowDates, TFactors, CFlowFlags] =
cfamounts(CouponRate, Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate, Face)

Arguments CouponRate Decimal number indicating the annual percentage rate
used to determine the coupons payable on a bond.

Settle Settlement date. A vector of serial date numbers or date
strings. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A vector of serial date numbers or date
strings.

Period (Optional) Coupons per year of the bond. A vector of
integers. Allowed values are 0, 1, 2, 3, 4, 6, and 12.
Default = 2.

Basis (Optional) Day-count basis of the bond. A vector of
integers. A scalar. 0 = actual/actual (default),
1 = 30/360 (SIA), 2 = actual/360, 3 = actual/365,
4 = 30/360 (PSA), 5 = 30/360 (ISDA),
6 = 30/360 (European), 7 = act/365 (Japanese).

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies
only when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. 1 = set rule on (default),
meaning that a bond’s coupon payment date is always
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued.

FirstCouponDate (Optional) Date when a bond makes its first coupon
payment. When FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes precedence in
determining the coupon payment structure.
4-29

cfamounts
Required arguments must be number of bonds (NUMBONDS) by 1 or
1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be
either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty
matrices.

Description [CFlowAmounts, CFlowDates, TFactors, CFlowFlags] =
cfamounts(CouponRate, Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate, Face) returns matrices of cash flow amounts, cash flow dates,
time factors, and cash flow flags for a portfolio of NUMBONDS fixed income
securities. The elements contained in the cash flow matrix, time factor
matrix, and cash flow flag matrix correspond to the cash flow dates for each
security. The first element of each row in the cash flow matrix is the accrued
interest payable on each bond. This is zero in the case of all zero coupon bonds.
This function determines all cash flows and time mappings for a bond whether
or not the coupon structure contains odd first or last periods. All output
matrices are padded with NaNs as necessary to ensure that all rows have the
same number of elements.

CFlowAmounts is the cash flow matrix of a portfolio of bonds. Each row
represents the cash flow vector of a single bond. Each element in a column
represents a specific cash flow for that bond.

LastCouponDate (Optional) Last coupon date of a bond prior to the
maturity date. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon
structure of a bond is truncated at the LastCouponDate
regardless of where it falls and will be followed only by
the bond’s maturity cash flow date.

StartDate (Future implementation; optional) Date when a bond
actually starts (the date from which a bond’s cash flows
can be considered). To make an instrument forward
starting, specify this date as a future date. If StartDate
is not explicitly specified, the effective start date is the
settlement date.

Face (Optional) Face or par value. Default = 100.
4-30

cfamounts
CFlowDates is the cash flow date matrix of a portfolio of bonds. Each row
represents a single bond in the portfolio. Each element in a column represents
a cash flow date of that bond.

TFactors is the matrix of time factors for a portfolio of bonds. Each row
corresponds to the vector of time factors for each bond. Each element in a
column corresponds to the specific time factor associated with each cash flow of
a bond. Time factors are useful in determining the present value of a stream of
cash flows. The term “time factor” refers to the exponent TF in the discounting
equation

where:

CFlowFlags is the matrix of cash flow flags for a portfolio of bonds. Each row
corresponds to the vector of cash flow flags for each bond. Each element in a
column corresponds to the specific flag associated with each cash flow of a bond.
Flags identify the type of each cash flow (e.g., nominal coupon cash flow, front
or end partial or “stub” coupon, maturity cash flow). Possible values are shown
in the table.

PV = present value of a cash flow

CF = the cash flow amount

 z = the risk-adjusted annualized rate or yield corresponding to given
cash flow. The yield is quoted on a semiannual basis.

TF = time factor for a given cash flow. Time is measured in semiannual
periods from the settlement date to the cash flow date. In computing
time factors, we use SIA actual/actual day count conventions for all
time factor calculations.

PV CF 1 z 2⁄+()TF⁄=
4-31

cfamounts
Flag Cash Flow Type

0 Accrued interest due on a bond at settlement.

1 Initial cash flow amount smaller than normal due to “stub” coupon
period. A stub period is created when the time from issue date to
first coupon is shorter than normal.

2 Larger than normal initial cash flow amount because first coupon
period is longer than normal.

3 Nominal coupon cash flow amount.

4 Normal maturity cash flow amount (face value plus the nominal
coupon amount).

5 End “stub” coupon amount (last coupon period abnormally short
and actual maturity cash flow is smaller than normal).

6 Larger than normal maturity cash flow because last coupon period
longer than normal.

7 Maturity cash flow on a coupon bond when the bond has less than
one coupon period to maturity.

8 Smaller than normal maturity cash flow when bond has less than
one coupon period to maturity.

9 Larger than normal maturity cash flow when bond has less than
one coupon period to maturity.

10 Maturity cash flow on a zero coupon bond.
4-32

cfamounts
Examples Consider a portfolio containing a corporate bond paying interest quarterly and
a treasury bond paying interest semiannually. Compute the cash flow
structure and the time factors for each bond.

Settle = '01-Nov-1993';
Maturity = ['15-Dec-1994';'15-Jun-1995'];
CouponRate= [0.06; 0.05];
Period = [4;2];
Basis = [1;0];
[CFlowAmounts, CFlowDates, TFactors, CFlowFlags] = ...
cfamounts(CouponRate,Settle, Maturity, Period, Basis)

CFlowAmounts =

 -0.7667 1.5000 1.5000 1.5000 1.5000 101.5000
 -1.8989 2.5000 2.5000 2.5000 102.5000 NaN

CFlowDates =

728234 728278 728368 728460 728552 728643
728234 728278 728460 728643 728825 NaN

TFactors =

0 0.2404 0.7403 1.2404 1.7403 2.2404
0 0.2404 1.2404 2.2404 3.2404 NaN

CFlowFlags =

0 3 3 3 3 4
0 3 3 3 4 NaN

See Also accrfrac, cfdates, cpncount, cpndaten, cpndatenq, cpndatep, cpndatepq,
cpndaysn, cpndaysp, cpnpersz
4-33

convfactor
4convfactorPurpose Treasury bond conversion factors

Syntax ConvFactor = convfactor(RefDate, Maturity, CouponRate, RefYield,
Convention)

Arguments

Description ConvFactor = convfactor(RefDate, Maturity, CouponRate, RefYield,
Convention) computes conversion factors based upon a reference 6%
semiannual yield.

Note You can verify the output of this function by comparing the output
against the quotations provided by the Chicago Board of Trade
(http://www.cbot.com).

Examples RefDate = [datenum('1-Dec-2002');
 datenum('1-Mar-2003');
 datenum('1-Jun-2003');
 datenum('1-Sep-2003');
 datenum('1-Dec-2003');
 datenum('1-Sep-2003');
 datenum('1-Dec-2002');

RefDate Reference dates, for which conversion factor is
computed (usually the first day of delivery months).

Maturity Maturity date of underlying bond.

CouponRate Annual coupon rate of underlying bond in decimal.

RefYield (Optional) Reference semiannual yield. Default = 0.06
(6%).

Convention (Optional) Conversion factor convention. Scalar. Valid
values are:

1 = U. S. Treasury bond (20-year) and Treasury note
(10-year) futures contract (default).

2 = U. S. 2-year and 5-year Treasury note futures
contract.
4-34

convfactor
 datenum('1-Jun-2003')];

Maturity = [datenum('15-Nov-2012');
 datenum('15-Aug-2012');
 datenum('15-Feb-2012');
 datenum('15-Feb-2011');
 datenum('15-Aug-2011');
 datenum('15-Aug-2010');
 datenum('15-Aug-2009');
 datenum('15-Feb-2010')];
CouponRate = [0.04; 0.04375; 0.04875; 0.05;
 0.05; 0.0575; 0.06; 0.065];

ConvFactor = convfactor(RefDate, Maturity, CouponRate)

ConvFactor =

 0.8539
 0.8858
 0.9259
 0.9418
 0.9403
 0.9862
 1.0000
 1.0266

See Also tfutbyprice, tfutbyyield
4-35

liborduration
4libordurationPurpose Duration of a LIBOR-based interest rate swap

Syntax [PayFixDuration GetFixDuration] = liborduration(SwapFixRate, Tenor,
Settle)

Arguments

Description [PayFixDuration GetFixDuration] = liborduration(SwapFixRate, Tenor,
Settle) computes the duration of LIBOR-based interest rate swaps.

PayFixDuration is the modified duration, in years, realized when entering
pay-fix side of the swap.

GetFixDuration is the modified duration, in years, realized when entering
receive-fix side of the swap.

Examples Given the data

SwapFixRate = 0.0383;
Tenor = 7;
Settle = datenum('11-Oct-2002');

compute the swap durations.

[PayFixDuration GetFixDuration] = liborduration(SwapFixRate,...
Tenor, Settle)

PayFixDuration =

 -4.7567

GetFixDuration =

 4.7567

See Also liborfloat2fixed, liborprice

SwapFixRate Swap fixed rate in decimal.

Tenor Life of the swap in years. Fractional numbers are
rounded upward.

Settle Settlement date.
4-36

liborfloat2fixed
4liborfloat2fixedPurpose Compute par fixed-rate of swap given three-month LIBOR data

Syntax [FixedSpec, ForwardDates, ForwardRates] =
liborfloat2fixed(ThreeMonthRates, Settle, Tenor, StartDate,
Interpolation, ConvexAdj, RateParam, InArrears, Sigma,
FixedCompound, FixedBasis)

Arguments ThreeMonthRates Three-month Eurodollar futures data or forward rate
agreement data. (A forward rate agreement stipulates
that a certain interest rate applies to a certain principal
amount for a given future time period.) An n-by-3 matrix
in the form of [month year IMMQuote]. The floating rate
is assumed to compound quarterly and to accrue on an
actual/360 basis.

Settle Settlement date of swap. Scalar.

Tenor Life of the swap. Scalar.

StartDate (Optional) Scalar value to denote reference date for
valuation of (forward) swap. This in effect allows forward
swap valuation. Default = Settle.

Interpolation (Optional) Interpolation method to determine applicable
forward rate for months when no Eurodollar data is
available. Default is 'linear' or 1. Other possible values
are 'Nearest' or 0, and 'Cubic' or 2.

ConvexAdj (Optional) Default = 0 (off). 1 = on. Denotes whether
futures/forward convexity adjustment is required.
Pertains to forward rate adjustments when those rates
are taken from Eurodollar futures data.

RateParam (Optional) Short-rate model’s parameters (Hull-White)
[a S], where the short-rate process is

Default = [0.05 0.015].

InArrears (Optional) Default = 0 (off). Set to 1 for on. If on, the
routine does an automatic an convexity adjustment to
forward rates.

dr θ t() ar–[]dt Sdz+=
4-37

liborfloat2fixed
Description [FixedSpec, ForwardDates, ForwardRates] =
liborfloat2fixed(ThreeMonthRates, Settle, Tenor, StartDate,
Interpolation, ConvexAdj, RateParam, InArrears, Sigma,
FixedCompound, FixedBasis computes forward rates, dates, and the swap
fixed rate.

FixedSpec specifies the structure of the fixed-rate side of the swap:

• Coupon: Par-swap rate

• Settle: Start date

• Maturity: End date

• Period; Frequency of payment

• Basis: Accrual basis

ForwardDates are dates corresponding to ForwardRates (all third Wednesdays
of the month, spread three months apart). The first element is the third
Wednesday immmediately after Settle.

ForwardRates are forward rates corresponding to the forward dates, quarterly
compounded, and on the actual/360 basis.

Note To preserve input integrity, Tenor is rounded upward to the closest
integer. Currently traded tenors are 2, 5, and 10 years.

The function assumes that floating-rate observations occur quarterly on the
third Wednesday of a delivery month. The first delivery month is the month of

Sigma (Optional) Overall annual volatility of caplets.

FixedCompound (Optional) Scalar value. Compounding or frequency of
payment on the fixed side. Also, the reset frequency.
Default = 4 (quarterly). Other values are 1, 2, and 12.

FixedBasis (Optional). Scalar value. Basis of the fixed side.
0 = actual/actual, 1 = 30/360 (SIA, default),
2 = actual/360 , 3 = actual/365, 4 = 30/360 (PSA),
5 = 30/360 (ISDA), 6 = 30/360 (European), 7 =
act/365 (Japanese).
4-38

liborfloat2fixed
the first third Wednesday after Settle. Floating-side payments occur on the
third-month anniversaries of observation dates.

Examples Use the supplied EDdata.xls file as input to a liborfloat2fixed computation.

[EDFutData, textdata] = xlsread('EDdata.xls');
Settle = datenum('15-Oct-2002');
Tenor = 2;

[FixedSpec, ForwardDates, ForwardRates] =...
liborfloat2fixed(EDFutData, Settle, Tenor)

FixedSpec =

 Coupon: 0.0222
 Settle: '16-Oct-2002'
 Maturity: '16-Oct-2004'
 Period: 4
 Basis: 1

ForwardDates =

 731505
 731596
 731687
 731778
 731869
 731967
 732058
 732149
4-39

liborfloat2fixed
ForwardRates =

 0.0177
 0.0166
 0.0170
 0.0188
 0.0214
 0.0248
 0.0279
 0.0305

See Also liborduration, liborprice
4-40

liborprice
4liborpricePurpose Price a swap given the swap rate

Syntax Price = liborprice(ThreeMonthRates, Settle, Tenor,
 SwapRate, StartDate, Interpolation, ConvexAdj, RateParam,

InArrears, Sigma, FixedCompound, FixedBasis)

Arguments ThreeMonthRates Three-month Eurodollar futures data or forward rate
agreement data. (A forward rate agreement stipulates
that a certain interest rate applies to a certain principal
amount for a given future time period.) An n-by-3 matrix
in the form of [month year IMMQuote]. The floating rate
is assumed to compound quarterly and to accrue on an
actual/360 basis.

Settle Settlement date of swap. Scalar.

Tenor Life of the swap. Scalar.

SwapRate Swap rate in decimal.

StartDate (Optional) Scalar value to denote reference date for
valuation of (forward) swap. This in effect allows forward
swap valuation. Default = Settle.

Interpolation (Optional) Interpolation method to determine applicable
forward rate for months when no Eurodollar data is
available. Default is 'linear' or 1. Other possible values
are 'Nearest' or 0, and 'Cubic' or 2.

ConvexAdj (Optional) Default = 0 (off). 1 = on. Denotes whether
futures/forward convexity adjustment is required.
Pertains to forward rate adjustments when those rates
are taken from Eurodollar futures data.

RateParam (Optional) Short-rate model’s parameters (Hull-White)
[a S], where the short-rate process is

Default = [0.05 0.015].

dr θ t() ar–[]dt Sdz+=
4-41

liborprice
Description Price = liborprice(ThreeMonthRates, Settle, Tenor, SwapRate,
StartDate, Interpolation, ConvexAdj, RateParam, InArrears, Sigma,
FixedCompound, FixedBasis) computes the price per $100 notional value of
a swap given the swap rate. A positive result indicates that fixed side is more
valuable than the floating side.

Price is the present value of the difference between floating and fixed-rate
sides of the swap per $100 notional.

Examples This example shows that a swap paying the par swap rate has a value of 0.

Load the input data.

[EDFutData, textdata] = xlsread('EDdata.xls');
Settle = datenum('15-Oct-2002');
Tenor = 2;

Compute the fixed rate from the Eurodollar data.

FixedSpec = liborfloat2fixed(EDFutData, Settle, Tenor);

InArrears (Optional) Default = 0 (off). Set to 1 for on. If on, the
routine does an automatic convexity adjustment to
forward rates.

Sigma (Optional) Overall annual volatility of caplets.

FixedCompound (Optional) Scalar value. Compounding or frequency of
payment on the fixed side. Also, the reset frequency.
Default = 4 (quarterly). Other values are 1, 2, and 12.

FixedBasis (Optional). Scalar value. Basis of the fixed side.
0 = actual/actual, 1 = 30/360 (SIA, default),
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA),
5 = 30/360 (ISDA), 6 = 30/360 (European),
7 = act/365 (Japanese).
4-42

liborprice
Compute the price of a par swap.

Price = liborprice(EDFutData, Settle, Tenor, FixedSpec.Coupon)

Price =

 3.4694e-015

See Also liborduration, liborfloat2fixed
4-43

mbscfamounts
4mbscfamountsPurpose Cash flow and time mapping for mortgage pool

Syntax [CFlowAmounts, CFlowDates, TFactors, Factors] =
mbscfamounts(Settle, Maturity, IssueDate, GrossRate, CouponRate,
Delay, PrepaySpeed, PrepayMatrix)

Arguments

All inputs (except PrepayMatrix) are number of mortgage-backed securities
(NMBS) by 1 vectors.

Description [CFlowAmounts, CFLowDates, TFactors, Factors] =
mbscfamounts(Settle, Maturity, IssueDate, GrossRate, CouponRate,
Delay, PrepaySpeed, PrepayMatrix) computes cash flows between settle
and maturity dates, the corresponding time factors in months from settle, and
the mortgage factor (the fraction of loan principal outstanding).

CFlowAmounts is a vector of cash flows starting from Settle through end of the
last month (Maturity).

Settle Settlement date. A serial date number or date string.
Settle must be earlier than or equal to Maturity.

Maturity Maturity date. A serial date number or date string.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

CouponRate Net coupon rate, in decimal. Default = GrossRate.

Delay Delay in days.

PrepaySpeed (Optional) Relation of the conditional payment rate
(CPR) to the benchmark model. Default = 0. Set
PrepaySpeed to [] if you input a customized prepayment
matrix.

PrepayMatrix (Optional) Used only when PrepayModel and
PrepaySpeed are unspecified.) Customized prepayment
vector. A NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column corresponds
to each mortgage-backed security, and each row
corresponds to each month after settlement.
4-44

mbscfamounts
CFlowDates indicates when cash flows occur, including at Settle. A negative
number at Settle indicates accrued interest is due.

TFactors is a vector of times in months from Settle, corresponding to each
cash flow.

Factors is a vector of mortgage factors (the fraction of the balance still
outstanding at the end of each month).

Examples Example 1. Given a mortgage with the following characteristics, compute the
cash flow amounts and dates, the time factors, and the mortgage factors.

Settle = datenum('17-April-2002');
Maturity = datenum('1-Jan-2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
PrepaySpeed = 100;

[CFlowAmounts, CFLowDates, TFactors, Factors] = ...
mbscfamounts(Settle, Maturity, IssueDate, GrossRate, ...
CouponRate, Delay, PrepaySpeed)

The result is contained in four 334-element row vectors.
4-45

mbscfamounts
Example 2. Given a portfolio of mortgage-backed securities, use mbscfamounts
to compute the cash flows and other factors from the portfolio.

Settle = datenum(['13-Jan-2000';'17-Apr-2002';'17-May-2002']);
Maturity = datenum('1-Jan-2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = [0.075; 0.07875; 0.0775];
Delay = 14;
PrepaySpeed = 100;

[CFlowAmounts, CFlowDates, TFactors, Factors] = ...
mbscfamounts(Settle, Maturity, IssueDate, GrossRate, ...
CouponRate, Delay, PrepaySpeed)

Each output is a 3-by-361 element matrix padded with NaNs wherever elements
are missing.

References PSA Uniform Practices, SF-4
4-46

mbsconvp
4mbsconvpPurpose Convexity of mortgage pool given price

Syntax Convexity = mbsconvp(Price, Settle, Maturity, IssueDate, GrossRate,
CouponRate, Delay, PrepaySpeed, PrepayMatrix)

Arguments

All inputs (except PrepayMatrix) are number of mortgage-backed securities
(NMBS) by 1 vectors.

Description Convexity = mbsconvp(Price, Settle, Maturity, IssueDate, GrossRate,
CouponRate, Delay, PrepaySpeed, PrepayMatrix) computes
mortgage-backed security convexity, given time information, price at
settlement, and optionally, a prepayment model.

Price Clean price for every $100 face value.

Settle Settlement date. A serial date number or date string.
Settle must be earlier than or equal to Maturity.

Maturity Maturity date. A serial date number or date string.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

CouponRate Net coupon rate, in decimal. Default = GrossRate.

Delay Delay in days.

PrepaySpeed (Optional) Relation of the conditional payment rate
(CPR) to the benchmark model. Default = 0. Set
PrepaySpeed to [] if you input a customized prepayment
matrix.

PrepayMatrix (Optional) Used only when PrepayModel and
PrepaySpeed are unspecified.) Customized prepayment
vector. A NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column corresponds
to each mortgage-backed security, and each row
corresponds to each month after settlement.
4-47

mbsconvp
Note If you specify the PSA or FHA model, it will be seasoned with how long
the debt has been outstanding (the loan’s age).

Examples Given a mortgage-backed security with the following characteristics, compute
the convexity of the security.

Price = 101;
Settle = '15-Apr-2002';
Maturity = '1 Jan 2030';
IssueDate = '1-Jan-2000';
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Speed = 100;

Convexity = mbsconvp(Price, Settle, Maturity, IssueDate,...
GrossRate, CouponRate, Delay, Speed)

Convexity =

 71.6299

See Also mbsconvy, mbsdurp, mbsdury

References PSA Uniform Practices, SF-49
4-48

mbsconvy
4mbsconvyPurpose Convexity of mortgage pool given yield

Syntax Convexity = mbsconvy(Yield, Settle, Maturity, IssueDate, GrossRate,
CouponRate, Delay, PrepaySpeed, PrepayMatrix)

Arguments

All inputs (except PrepayMatrix) are number of mortgage-backed securities
(NMBS) by 1 vectors.

Description Convexity = mbsconvy(Yield, Settle, Maturity, IssueDate, GrossRate,
CouponRate, Delay, PrepaySpeed, PrepayMatrix) computes
mortgage-backed security convexity, given time information, semiannual
mortgage yield, and optionally, a prepayment model.

Yield Mortgage yield, compounded monthly (in decimal).

Settle Settlement date. A serial date number or date string.
Settle must be earlier than or equal to Maturity.

Maturity Maturity date. A serial date number or date string.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

CouponRate Net coupon rate, in decimal. Default = GrossRate.

Delay Delay in days.

PrepaySpeed (Optional) Relation of the conditional payment rate
(CPR) to the benchmark model. Default = 0. Set
PrepaySpeed to [] if you input a customized prepayment
matrix.

PrepayMatrix (Optional) Used only when PrepayModel and
PrepaySpeed are unspecified.) Customized prepayment
vector. A NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column corresponds
to each mortgage-backed security, and each row
corresponds to each month after settlement.
4-49

mbsconvy
Note If you specify the PSA or FHA model, it will be seasoned with how long
the debt has been outstanding (the loan’s age).

Examples Given a mortgage-backed security with the following characteristics, compute
the convexity of the security.

Yield = 0.07125;
Settle = '15-Apr-2002';
Maturity = '1 Jan 2030';
IssueDate = '1-Jan-2000';
GrossRate = 0.08125;
Speed = 100;
CouponRate = 0.075;
Delay = 14;

Convexity = mbsconvy(Yield, Settle, Maturity, IssueDate, ...
GrossRate, CouponRate, Delay, Speed)

Convexity =

 73.5509

See Also mbsconvp, mbsdurp, mbsdury

References PSA Uniform Practices, SF-49
4-50

mbsdurp
4mbsdurpPurpose Duration of mortgage pool given price

Syntax [YearDuration, ModDuration] = mbsdurp(Price, Settle, Maturity,
IssueDate, GrossRate, CouponRate, Delay, PrepaySpeed,
PrepayMatrix)

Arguments

All inputs (except PrepayMatrix) are number of mortgage-backed securities
(NMBS) by 1 vectors.

Description [YearDuration, ModDuration] = mbsdurp(Price, Settle, Maturity,
IssueDate, GrossRate, CouponRate, Delay, PrepaySpeed, PrepayMatrix)
computes the mortgage-backed security Macaulay (YearDuration) and
modified (ModDuration) durations, given time information, price at settlement,
and optionally, a prepayment model.

Price Clean price for every $100 face value.

Settle Settlement date. A serial date number or date string.
Settle must be earlier than or equal to Maturity.

Maturity Maturity date. A serial date number or date string.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

CouponRate Net coupon rate, in decimal. Default = GrossRate.

Delay Delay in days.

PrepaySpeed (Optional) Relation of the conditional payment rate
(CPR) to the benchmark model. Default = 0. Set
PrepaySpeed to [] if you input a customized prepayment
matrix.

PrepayMatrix (Optional) Used only when PrepayModel and
PrepaySpeed are unspecified.) Customized prepayment
vector. A NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column corresponds
to each mortgage-backed security, and each row
corresponds to each month after settlement.
4-51

mbsdurp
Note If you specify the PSA or FHA model, it will be seasoned with how long
the debt has been outstanding (the loan’s age).

Examples Given a mortgage-backed security with the following characteristics, compute
the Macaulay and modified durations of the security.

Price = 101;
Settle = datenum('15-Apr-2002');
Maturity = datenum('1 Jan 2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;;
Delay = 14;
Speed = 100;

[YearDuration, ModDuration] = mbsdurp(Price, Settle, Maturity,...
IssueDate, GrossRate, CouponRate, Delay, Speed)

YearDuration =

 6.4380

ModDuration =

 6.2080

See Also mbsconvp, mbsconvy, mbsdury

References PSA Uniform Practices, SF-49
4-52

mbsdury
4mbsduryPurpose Duration of mortgage pool given yield

Syntax [YearDuration, ModDuration] = mbsdury(Yield, Settle, Maturity,
IssueDate, GrossRate, CouponRate, Delay, PrepaySpeed,
PrepayMatrix)

Arguments

All inputs (except PrepayMatrix) are number of mortgage-backed securities
(NMBS) by 1 vectors.

Description [YearDuration, ModDuration] = mbsdurvy(Yield, Settle, Maturity,
IssueDate, GrossRate, CouponRate, Delay, PrepayModel, PrepaySpeed,
PrepayMatrix) computes the mortgage-backed security Macaulay
(YearDuration) and Modified (ModDuration) durations, given time
information, yield to maturity, and optionally, a prepayment model.

Yield Mortgage yield, compounded monthly, in decimal.

Settle Settlement date. A serial date number or date string.
Settle must be earlier than or equal to Maturity.

Maturity Maturity date. A serial date number or date string.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

CouponRate Net coupon rate, in decimal. Default = GrossRate.

Delay Delay in days.

PrepaySpeed (Optional) Relation of the conditional payment rate
(CPR) to the benchmark model. Default = 0. Set
PrepaySpeed to [] if you input a customized prepayment
matrix.

PrepayMatrix (Optional) Used only when PrepayModel and
PrepaySpeed are unspecified.) Customized prepayment
vector. A NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column corresponds
to each mortgage-backed security, and each row
corresponds to each month after settlement.
4-53

mbsdury
Note If you specify the PSA or FHA model, it will be seasoned with how long
the debt has been outstanding (the loan’s age).

Examples Given a mortgage-backed security with the following characteristics, compute
the Macaulay and Modified durations of the security.

Yield = 0.07298413;
Settle = '15-Apr-2002';
Maturity = '1 Jan 2030';
IssueDate = '1-Jan-2000';
GrossRate = 0.08125;
Speed = 100;
CouponRate = 0.075;
Delay = 14;

[YearDuration, ModDuration] = mbsdury(Yield, Settle, Maturity,...
IssueDate, GrossRate, CouponRate, Delay, Speed)

YearDuration =

 6.4380

ModDuration =

 6.2080

See Also mbsconvp, mbsconvy, mbsdurp

References PSA Uniform Practices, SF-49
4-54

mbsnoprepay
4mbsnoprepayPurpose End-of-month mortgage cash flows and balances without prepayment

Syntax [Balance, Interest, Payment, Principal] =
mbsnoprepay(OriginalBalance, GrossRate, Term)

Arguments

All inputs are number of mortgage-backed securities (NMBS) by 1 vectors.

Description [Balance, Interest, Payment, Principal] =
mbsnoprepay(OriginalBalance, GrossRate, Term) computes end-of-month
mortgage balance, interest payments, principal payments, and cash flow
payments with zero prepayment rate.

The function returns amortizing cash flows and balances over a specified term
with no prepayment. When the lengths of passthroughs are not the same,
MATLAB pads the shorter ones with NaN.

Balance lists the end-of-month balances over the life of the passthrough.

Interest lists all end-of-month interest payments over the life of the
passthrough.

Payment lists all end-of-month payments over the life of the passthrough.

Principal lists all scheduled end-of-month principal payments over the life of
the passthrough.

All outputs are Term-by-1 vectors.

Examples Given mortgage pools with the following characteristics, compute an
amortization schedule.

OriginalBalance = 400000000;
CouponRate = 0.08125;
Term = [357; 355]; % Three- and five-month old mortgage pools.

[Balance, Interest, Payment, Principal] = ...
mbsnoprepay(OriginalBalance, CouponRate, Term);

OriginalBalance Original face value in dollars.

GrossRate Gross coupon rate (including fees), in decimal.

Term Term of the mortgage in months.
4-55

mbsoas2price
4mbsoas2pricePurpose Price given an option-adjusted spread

Syntax Price = mbsoas2price(ZeroCurve, OAS, Settle, Maturity, IssueDate,
GrossRate, CouponRate, Delay, Interpolation, PrepaySpeed,
PrepayMatrix)

Arguments ZeroCurve A matrix of three columns:

Column 1: Serial date numbers.
Column 2: Spot rates with maturities corresponding to
the dates in Column 1, in decimal (e.g., 0.075).
Column 3: Compounding of the rates in Column 2. (This
is the agency spot rate on the settlement date.)

OAS Option-adjusted spreads in basis points.

Settle Settlement date (scalar only). A serial date number or
date string. Date when option-adjusted spread is
calculated.

Maturity Maturity date. Scalar or vector in serial date number or
date string format.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

CouponRate (Optional) Net coupon rate, in decimal.
Default = GrossRate.

Delay (Optional) Delay (in days) between payment from
homeowner and receipt by bondholder. Default = 0 (no
delay between payment and receipt.

Interpolation Interpolation method. Computes the corresponding spot
rates for the bond’s cash flow. Available methods are (0)
nearest, (1) linear, and (2) cubic spline. Default = 1. See
interp1 for more information.
4-56

mbsoas2price
All inputs (except PrepayMatrix) are number of mortgage-backed securities
(NMBS) by 1 vectors.

Description Price = mbsoas2price(ZeroCurve, OAS, Settle, Maturity, IssueDate,
GrossRate, CouponRate, Delay, Interpolation, PrepaySpeed,
PrepayMatrix) computes the clean price of a passthrough security for each
$100 face value of outstanding principal.

Examples Given an option-adjusted spread, a spot curve, and a prepayment assumption,
compute theoretical price of a mortgage pool.

Create the bonds matrix.

Bonds = [datenum('11/21/2002') 0 100 0 2 1;
datenum('02/20/2003') 0 100 0 2 1;
datenum('07/31/2004') 0.03 100 2 3 1;
datenum('08/15/2007') 0.035 100 2 3 1;
datenum('08/15/2012') 0.04875 100 2 3 1;
datenum('02/15/2031') 0.05375 100 2 3 1];

Choose a settlement date.

Settle = datenum('20-Aug-2002');

PrepaySpeed (Optional) Relation of the conditional payment rate
(CPR) to the benchmark model. Default = end of month’s
CPR. Set PrepaySpeed to [] if you input a customized
prepayment matrix.

PrepayMatrix (Optional) Customized prepayment matrix. A matrix of
size max(TermRemaining)-by-NMBS. Missing values are
padded with NaNs. Each column corresponds to a
mortgage-backed security, and each row corresponds to
each month after settlement.
4-57

mbsoas2price
Assume these clean prices for the bonds.

Prices = [98.97467;
98.58044;
100.10534;
98.18054;
101.38136;
99.25411];

Use this formula to compute spot compounding for the bonds.

SpotCompounding = 2*ones(size(Prices));

Use compute the zero curve.

[ZeroRatesP, CurveDatesP] = zbtprice(Bonds, Prices, Settle);
ZeroCurve = [CurveDatesP, ZeroRatesP, SpotCompounding];

Assign parameters.

OAS = [26.0502; 28.6348; 31.2222];
Maturity = datenum('02-Jan-2030');
IssueDate = datenum('02-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Interpolation = 1;
PrepaySpeed = [0 50 100];

Calculate the price from the option-adjusted spread.

Price = mbsoas2price(ZeroCurve, OAS, Settle, Maturity, ...
IssueDate, GrossRate, CouponRate, Delay, Interpolation, ...
PrepaySpeed)

Price =

 95.0000
 95.0000
 95.0000

See Also mbsprice2oas, mbsyield2oas, mbsoas2yield
4-58

mbsoas2yield
4mbsoas2yieldPurpose Yield given an option-adjusted spread

Syntax [MYield, BEMBSYield] = mbsoas2yield(ZeroCurve, OAS, Settle,
Maturity, IssueDate, GrossRate, CouponRate, Delay, Interpolation,
PrepaySpeed, PrepayMatrix)

Arguments ZeroCurve A matrix of three columns:

Column 1: Serial date numbers.
Column 2: Spot rates with maturities corresponding to
the dates in Column 1, in decimal (e.g., 0.075).
Column 3: Compounding of the rates in Column 2. (This
is the agency spot rate on the settlement date.)

OAS Option-adjusted spreads in basis points.

Settle Settlement date (scalar only). A serial date number or
date string. Date when option-adjusted spread is
calculated.

Maturity Maturity date. Scalar or vector in serial date number or
date string format.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

CouponRate (Optional) Net coupon rate, in decimal.
Default = GrossRate.

Delay (Optional) Delay (in days) between payment from
homeowner and receipt by bondholder. Default = 0 (no
delay between payment and receipt.

Interpolation Interpolation method. Computes the corresponding spot
rates for the bond’s cash flow. Available methods are (0)
nearest, (1) linear, and (2) cubic spline. Default = 1. See
interp1 for more information.
4-59

mbsoas2yield
All inputs (except PrepayMatrix) are number of mortgage-backed securities
(NMBS) by 1 vectors.

Description [MYield, BEMBSYield] = mbsoas2yield(ZeroCurve, OAS, Settle,
Maturity, IssueDate, GrossRate, CouponRate, Delay, Interpolation,
PrepaySpeed, PrepayMatrix) computes the mortgage and bond-equivalent
yields of a passthrough security.

MYield is the yield to maturity of the mortgage-backed security (the mortgage
yield). This yield is compounded monthly (12 times per year).

Example: 0.075 (7.5%)

BEMBSYield is the corresponding bond equivalent yield of the mortgage-backed
security. This yield is compounded semiannually (two times per year).

Example: 0.0761 (7.61%)

Examples Given an option-adjusted spread, a spot curve, and a prepayment assumption,
compute the theoretical yield to maturity of a mortgage pool.

Create the bonds matrix.

Bonds = [datenum('11/21/2002') 0 100 0 2 1;
datenum('02/20/2003') 0 100 0 2 1;
datenum('07/31/2004') 0.03 100 2 3 1;
datenum('08/15/2007') 0.035 100 2 3 1;
datenum('08/15/2012') 0.04875 100 2 3 1;
datenum('02/15/2031') 0.05375 100 2 3 1];

PrepaySpeed (Optional) Relation of the conditional payment rate
(CPR) to the benchmark model. Default = end of month’s
CPR. Set PrepaySpeed to [] if you input a customized
prepayment matrix.

PrepayMatrix (Optional) Customized prepayment matrix. A matrix of
size max(TermRemaining)-by-NMBS. Missing values are
padded with NaNs. Each column corresponds to a
mortgage-backed security, and each row corresponds to
each month after settlement.
4-60

mbsoas2yield
Choose a settlement date.

Settle = datenum('08/20/2002');

Assume these clean prices for the bonds.

Prices = [98.97467;
98.58044;
100.10534;
98.18054;
101.38136;
99.25411];

Use this formula to compute spot compounding for the bonds.

SpotCompounding = 2*ones(size(Prices));

Compute the zero curve.

[ZeroRatesP, CurveDatesP] = zbtprice(Bonds, Prices, Settle);
ZeroCurve = [CurveDatesP, ZeroRatesP, SpotCompounding];

Assign parameters.

OAS = [26.0502; 28.6348; 31.2222];
Maturity = datenum('02-Jan-2030');
IssueDate = datenum('02-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Interpolation = 1;
PrepaySpeed = [0 50 100];

Compute the mortgage yield and bond equivalent mortgage yield.

[MYield BEMBSYield] = mbsoas2yield(ZeroCurve, OAS, Settle, ...
Maturity, IssueDate, GrossRate, CouponRate, Delay, ...
Interpolation, PrepaySpeed)

MYield =

 0.0802
 0.0814
 0.0828
4-61

mbsoas2yield
BEMBSYield =

 0.0816
 0.0828
 0.0842

See Also mbsprice2oas, mbsyield2oas, mbsoas2price
4-62

mbspassthrough
4mbspassthroughPurpose Mortgage pool cash flows and balances with prepayment

Syntax [Balance, Payment, Principal, Interest, Prepayment] =
mbspassthrough(OriginalBalance, GrossRate, OriginalTerm,
TermRemaining, PrepaySpeed, PrepayMatrix)

Arguments

All inputs (except PrepayMatrix) are number of mortgage-backed securities
(NMBS) by 1 vectors.

OriginalBalance Original balance value in dollars (balance at the
beginning of each TermRemaining).

GrossRate Gross coupon rate (including fees), in decimal.

OriginalTerm Term of the mortgage in months.

TermRemaining (Optional) Number of full months between settlement
and maturity.

PrepaySpeed (Optional) Relation of the conditional payment rate
(CPR) to the benchmark model. Default = 0 (no
prepayment). Set PrepaySpeed to [] if you input a
customized prepayment matrix.

PrepayMatrix (Optional) Used only when PrepaySpeed is unspecified.
Customized prepayment vector. A NaN-padded matrix of
size max(TermRemaining)-by-NMBS. Each column
corresponds to each mortgage-backed security, and each
row corresponds to each month after settlement.
4-63

mbspassthrough
Description [Balance, Payment, Principal, Interest, Prepayment] =
passthrough(OriginalBalance, GrossRate, OriginalTerm,
TermRemaining, PrepaySpeed, PrepayMatrix) computes the cash flow of
principal, interest, and prepayment of passthrough securities.

All outputs are TermRemaining-by-1 vectors of end-of-month values.

Balance is the principal balance at end of month.

Payment is the total monthly payment.

Principal is the principal portion of the payment.

Interest is the interest portion of the payment.

Prepayment indicates any unscheduled principal payment.

By default, the securities are seasoned. The applicable CPR depends upon
TermRemaining based upon a 30-year prepayment model (PSA or FHA). You
may supply a different CPR vector of size TermRemaining-by-1.

 Examples Compute the cash flows and balances of a three-month old mortgage pool with
original term of 360 months, assuming a prepayment speed of 100.

OriginalBalance = 100000;
GrossRate = 0.08125;
OriginalTerm = 360;
TermRemaining = 357;
PrepaySpeed = 100;

[Balance, Payment, Principal, Interest, Prepayment] =...
mbspassthrough(OriginalBalance, GrossRate, OriginalTerm,...
TermRemaining, PrepaySpeed);

See Also mbswal
4-64

mbsprice
4mbspricePurpose Mortgage-backed security price given yield

Syntax [Price, AccrInt] = mbsprice(Yield, Settle, Maturity, IssueDate,
GrossRate, CouponRate, Delay, PrepaySpeed, PrepayMatrix)

Arguments

All inputs (except PrepayMatrix) are number of mortgage-backed securities
(NMBS) by 1 vectors.

Description [Price, AccrInt] = mbsprice(Yield, Settle, Maturity, IssueDate,
GrossRate, CouponRate, Delay, PrepaySpeed, PrepayMatrix) computes a
mortgage-backed security price, given time information, mortgage yield at
settlement, and optionally, a prepayment model.

All outputs are scalar values.

Yield Mortgage yield, compounded monthly (in decimal).

Settle Settlement date. A serial date number or date string.
Settle must be earlier than or equal to Maturity.

Maturity Maturity date. A serial date number or date string.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

CouponRate (Optional) Net coupon rate, in decimal.
Default = GrossRate.

Delay (Optional) Delay (in days) between payment from
homeowner and receipt by bondholder. Default = 0 (no
delay between payment and receipt.

PrepaySpeed (Optional) Relation of the conditional payment rate
(CPR) to the benchmark model. Default = 0 (no
prepayment). Set PrepaySpeed to [] if you input a
customized prepayment matrix.

PrepayMatrix (Optional) Customized prepayment matrix. A matrix of
size max(TermRemaining)-by-NMBS. Missing values are
padded with NaNs. Each column corresponds to a
mortgage-backed security, and each row corresponds to
each month after settlement.
4-65

mbsprice
Price is the clean price for every $100 face value of the securities.

AccrInt is the accrued interest of the mortgage-backed securities.

Examples Example 1. Given a mortgage-backed security with the following
characteristics, compute the price and the accrued interest due on the security.

Yield = 0.0725;
Settle = datenum('15-Apr-2002');
Maturity = datenum('1 Jan 2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Speed = 100;

[Price AccrInt] = mbsprice(Yield, Settle, Maturity, IssueDate,...
GrossRate, CouponRate, Delay, Speed)

Price =

 101.3147

AccrInt =

 0.2917
4-66

mbsprice
Example 2. Given a portfolio of mortgage-backed securities, compute the clean
prices and accrued interest.

Yield = 0.075;
Settle = datenum(['13-Feb-2000';'17-Apr-2002';'17-May-2002';...
'13-Jan-2000']);
Maturity = datenum('1-Jan-2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = [0.075; 0.07875; 0.0775; 0.08125];
Delay = 14;
Speed = 100;

[Price AccrInt] = mbsprice(Yield, Settle, Maturity, IssueDate,...
GrossRate, CouponRate, Delay, Speed)

Price =

 99.7085
 102.0678
 101.2792
 104.0175

AccrInt =

 0.2500
 0.3500
 0.3444
 0.2708

See Also mbsyield

References PSA Uniform Practices, SF-49
4-67

mbsprice2oas
4mbsprice2oasPurpose Option-adjusted spread given price

Syntax OAS = mbsprice2oas(ZeroCurve, Price, Settle, Maturity, IssueDate,
GrossRate, CouponRate, Delay, Interpolation PrepaySpeed,
PrepayMatrix)

Arguments ZeroCurve A matrix of three columns:

Column 1: Serial date numbers.
Column 2: Spot rates with maturities corresponding to
the dates in Column 1, in decimal (e.g., 0.075).
Column 3: Compounding of the rates in Column 2.
Values are 1 (annual), 2 (semiannual, 3 (three times per
year), 4 (quarterly), 6 (bimonthly), 12 (monthly), and
-1 (continuous).

Price Clean price for every $100 face value of bond issue.

Settle Settlement date (scalar only). A serial date number or
date string. Date when option-adjusted spread is
calculated.

Maturity Maturity date. Scalar or vector in serial date number or
date string format.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

CouponRate (Optional) Net coupon rate, in decimal.
Default = GrossRate.

Delay (Optional) Delay (in days) between payment from
homeowner and receipt by bondholder. Default = 0 (no
delay between payment and receipt.

Interpolation Interpolation method. Computes the corresponding spot
rates for the bond’s cash flow. Available methods are (0)
nearest, (1) linear, and (2) cubic spline. Default = 1. See
interp1 for more information.
4-68

mbsprice2oas
All inputs (except PrepayMatrix) are number of mortgage-backed securities
(NMBS) by 1 vectors.

Description OAS = mbsprice2oas(ZeroCurve, Price, Settle, Maturity, IssueDate,
GrossRate, CouponRate, Delay, Interpolation, PrepaySpeed,
PrepayMatrix) computes the option-adjusted spread in basis points.

Examples Calculate the option-adjusted spread of a 30-year fixed-rate mortgage with
about a 28-year weighted average maturity remaining, given assumptions of 0,
50, and 100 PSA prepayments.

Create the bonds matrix.

Bonds = [datenum('11/21/2002') 0 100 0 2 1;
 datenum('02/20/2003') 0 100 0 2 1;
 datenum('07/31/2004') 0.03 100 2 3 1;
 datenum('08/15/2007') 0.035 100 2 3 1;
 datenum('08/15/2012') 0.04875 100 2 3 1;
 datenum('02/15/2031') 0.05375 100 2 3 1];

Choose a settlement date.

Settle= datenum('20-Aug-2002');

PrepaySpeed (Optional) Relation of the conditional payment rate
(CPR) to the benchmark model. Default = end of month’s
CPR. Set PrepaySpeed to [] if you input a customized
prepayment matrix.

PrepayMatrix (Optional) Customized prepayment matrix. A matrix of
size max(TermRemaining)-by-NMBS. Missing values are
padded with NaNs. Each column corresponds to a
mortgage-backed security, and each row corresponds to
each month after settlement.
4-69

mbsprice2oas
Assume these clean prices for the bonds.

Prices = [98.97467;
98.58044;
100.10534;
98.18054;
101.38136;
99.25411];

Use this formula to compute spot compounding for the bonds.

SpotCompounding = 2*ones(size(Prices));

Compute the zero curve.

[ZeroRatesP, CurveDatesP] = zbtprice(Bonds, Prices, Settle);
ZeroCurve = [CurveDatesP, ZeroRatesP, SpotCompounding];

Assign parameters.

Price = 95;
Maturity = datenum('02-Jan-2030');
IssueDate = datenum('02-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Interpolation = 1;
PrepaySpeed = [0; 50; 100];
Interpolation = 1;
PrepaySpeed = [0; 50; 100];

Compute the option adjusted spread.

OAS = mbsprice2oas(ZeroCurve, Price, Settle, Maturity, ...
IssueDate, GrossRate, CouponRate, Delay, Interpolation, ...
PrepaySpeed)
4-70

mbsprice2oas
OAS =

 26.0502
 28.6348
 31.2222

See Also mbsoas2price, mbsoas2yield, mbsyield2oas
4-71

mbsprice2speed
4mbsprice2speedPurpose Implied PSA prepayment speeds given price

Syntax [ImpSpdOnPrc, ImpSpdOnDur, ImpSpdOnCnv] = mbsprice2speed(Price,
Settle, Maturity, IssueDate, GrossRate, PrepayMatrix, CouponRate,
Delay)

Arguments

All inputs (except PrepayMatrix) are number of mortgage-backed securities
(NMBS) by 1 vectors.

Description [ImpSpdOnPrc, ImpSpdOnDur, ImpSpdOnCnv] = mbsprice2speed(Price,
Settle, Maturity, IssueDate, GrossRate, PrepayMatrix, CouponRate,
Delay) computes PSA prepayment speeds implied by pool prices and projected
(user-defined) prepayment vectors. The calculated PSA speed produces the
same price, modified duration, or modified convexity, depending upon the
output requested.

ImpSpdOnPrc calculates the equivalent PSA benchmark prepayment
speed for the passthrough to carry the same price.

Price Clean price for every $100 face value.

Settle Settlement date. A serial date number or date string.
Settle must be earlier than or equal to Maturity.

Maturity Maturity date. A serial date number or date string.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

PrepayMatrix Customized prepayment matrix. A matrix of size
max(TermRemaining)-by-NMBS. Missing values are
padded with NaNs. Each column corresponds to a
mortgage-backed security, and each row corresponds to
each month after settlement.

CouponRate (Optional) Net coupon rate, in decimal.
Default = GrossRate.

Delay (Optional) Delay (in days) between payment from
homeowner and receipt by bondholder. Default = 0 (no
delay between payment and receipt.
4-72

mbsprice2speed
ImpSpdOnDur calculates the equivalent PSA benchmark prepayment
speed for the passthrough to carry the same modified duration.

ImpSpdOnCnv calculates the equivalent PSA benchmark prepayment
speed for the passthrough to carry the same modified convexity.

All outputs are NMBS-by-1 vectors.

Examples Calculate the equivalent PSA benchmark prepayment speeds for a mortgage
pool with these characteristics and prepayment matrix.

Price = 101;
Settle = datenum('1-Jan-2000');
Maturity = datenum('1-Jan-2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
PrepayMatrix = 0.005*ones(360,1);
CouponRate = 0.075;
Delay = 14;

[ImpSpdOnPrc, ImpSpdOnDur, ImpSpdOnCnv] = ...
mbsprice2speed(Price,Settle, Maturity, IssueDate, ...
GrossRate, PrepayMatrix, CouponRate, Delay)

ImpSpdOnPrc =

 118.5980

ImpSpdOnDur =

 118.3946

ImpSpdOnCnv =

 109.5115
4-73

mbsprice2speed
See Also mbsprice, mbsyield2speed

References PSA Uniform Practices, SF-49
4-74

mbswal
4mbswalPurpose Weighted average life of a mortgage pool

Compatibility PSA

Syntax WAL = mbswal(Settle, Maturity, IssueDate, GrossRate, CouponRate,
Delay, PrepaySpeed, PrepayMatrix)

Arguments

All inputs (except PrepayMatrix) are number of mortgage-backed securities
(NMBS) by 1 vectors.

Description WAL = mbswal(Settle, Maturity, IssueDate, GrossRate, CouponRate,
Delay, PrepaySpeed, PrepayMatrix) computes the weighted average life, in
number of years, of a mortgage pool, as measured from the settlement date.

Settle Settlement date. A serial date number or date string.
Settle must be earlier than or equal to Maturity.

Maturity Maturity date. A serial date number or date string.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

CouponRate (Optional) Net coupon rate, in decimal.
Default = GrossRate.

Delay (Optional) Delay (in days) between payment from
homeowner and receipt by bondholder. Default = 0 (no
delay between payment and receipt.

PrepaySpeed (Optional) Relation of the conditional payment rate
(CPR) to the benchmark model. Default = end of month’s
CPR. Set PrepaySpeed to [] if you input a customized
prepayment matrix.

PrepayMatrix (Optional) Customized prepayment matrix. A matrix of
size max(TermRemaining)-by-NMBS. Missing values are
padded with NaNs. Each column corresponds to a
mortgage-backed security, and each row corresponds to
each month after settlement.
4-75

mbswal
Examples Given a passthrough security with the following characteristics, compute the
weighted average life of the security.

Settle = datenum('15-Apr-2002');
Maturity = datenum('1 Jan 2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Speed = 100;

WAL = mbswal(Settle, Maturity, IssueDate, GrossRate, ...
CouponRate, Delay, Speed)

WAL =

 10.5477

See Also mbspassthrough

References PSA Uniform Practices, SF-49
4-76

mbsyield
4mbsyieldPurpose Mortgage-backed security yield given price

Syntax [MYield, BEMBSYield] = mbsyield(Price, Settle, Maturity, IssueDate,
GrossRate, CouponRate, Delay, PrepaySpeed, PrepayMatrix)

Arguments

All inputs (except PrepayMatrix) are number of mortgage-backed securities
(NMBS) by 1 vectors.

Description [MYield, BEMBSYield] = mbsyield(Price, Settle, Maturity, IssueDate,
GrossRate, CouponRate, Delay, PrepaySpeed, PrepayMatrix) computes a
mortgage-backed security yield to maturity and the bond equivalent yield,
given time information, price at settlement, and optionally, a prepayment
model.

Price Clean price for every $100 face value.

Settle Settlement date. A serial date number or date string.
Settle must be earlier than or equal to Maturity.

Maturity Maturity date. A serial date number or date string.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

CouponRate (Optional) Net coupon rate, in decimal.
Default = GrossRate.

Delay (Optional) Delay (in days) between payment from
homeowner and receipt by bondholder. Default = 0 (no
delay between payment and receipt.

PrepaySpeed (Optional) Relation of the conditional payment rate
(CPR) to the benchmark model. Default = 0 (no
prepayment). Set PrepaySpeed to [] if you input a
customized prepayment matrix.

PrepayMatrix (Optional) Customized prepayment matrix. A matrix of
size max(TermRemaining)-by-NMBS. Missing values are
padded with NaNs. Each column corresponds to a
mortgage-backed security, and each row corresponds to
each month after settlement.
4-77

mbsyield
MYield is the yield to maturity of the mortgage-backed security (the mortgage
yield). This yield is compounded monthly (12 times a year).

BEMBSYield is the corresponding bond equivalent yield of the mortgage-backed
security. This yield is compounded semiannually (two times a year).

Examples Example 1. Given a mortgage-backed security with the following
characteristics, compute the mortgage yield and the bond equivalent yield of
the security.

Price = 102;
Settle = '15-Apr-2002';
Maturity = '1 Jan 2030';
IssueDate = '1-Jan-2000';
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Speed = 100;

[MYield, BEMBSYield] = mbsyield(Price, Settle, Maturity, ...
IssueDate, GrossRate, CouponRate, Delay, Speed)

MYield =

 0.0715

BEMBSYield =

 0.0725
4-78

mbsyield
Example 2. Given a portfolio of mortgage-backed securities, compute the
mortgage yields and the bond equivalent yields.

Price = 102;
Settle = datenum(['13-Feb-2000';'17-Apr-2002';'17-May-2002';...
'13-Jan-2000']);
Maturity = datenum('1-Jan-2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = [0.075; 0.07875; 0.0775; 0.08125];
Delay = 14;
Speed = 100;

[MYield, BEMBSYield] = mbsyield(Price, Settle, Maturity,...
IssueDate, GrossRate, CouponRate, Delay, Speed)

MYield =

 0.0717
 0.0751
 0.0739
 0.0779

BEMBSYield =

 0.0728
 0.0763
 0.0750
 0.0791

See Also mbsprice

References PSA Uniform Practices, SF-49
4-79

mbsyield2oas
4mbsyield2oasPurpose Option-adjusted spread given yield

Syntax OAS = mbsyield2oas(ZeroCurve, Yield, Settle, Maturity, IssueDate,
GrossRate, CouponRate, Delay, Interpolation PrepaySpeed,
PrepayMatrix)

Arguments ZeroCurve A matrix of three columns:

Column 1: serial date numbers
Column 2: spot rates with maturities corresponding to
the dates in Column 1, in decimal (e.g., 0.075)
Column 3: Compounding of the rates in Column 2.
Values are 1 (annual), 2 (semiannual, 3 (three times per
year), 4 (quarterly), 6 (bimonthly), 12 (monthly), and
-1 (continuous).

Yield Mortgage yield, compounded monthly (in decimal).

Settle Settlement date (scalar only). A serial date number or
date string. Date when option-adjusted spread is
calculated.

Maturity Maturity date. Scalar or vector in serial date number or
date string format.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

CouponRate (Optional) Net coupon rate, in decimal.
Default = GrossRate.

Delay (Optional) Delay (in days) between payment from
homeowner and receipt by bondholder. Default = 0 (no
delay between payment and receipt.

Interpolation Interpolation method. Computes the corresponding spot
rates for the bond’s cash flow. Available methods are (0)
nearest, (1) linear, and (2) cubic spline. Default = 1. See
interp1 for more information.
4-80

mbsyield2oas
All inputs (except PrepayMatrix) are number of mortgage-backed securities
(NMBS) by 1 vectors.

Description OAS = mbsyield2oas(ZeroCurve, Yield, Settle, Maturity, IssueDate,
GrossRate, CouponRate, Delay, Interpolation, PrepaySpeed,
PrepayMatrix) computes the option-adjusted spread in basis points.

Examples Calculate the option-adjusted spread of a 30-year fixed-rate mortgage pool with
about 28-year weighted average maturity left, given assumptions of 0, 50, and
100 PSA prepayments.

Create bonds matrix.

Bonds = [datenum('11/21/2002') 0 100 0 2 1;
 datenum('02/20/2003') 0 100 0 2 1;
 datenum('07/31/2004') 0.03 100 2 3 1;
 datenum('08/15/2007') 0.035 100 2 3 1;
 datenum('08/15/2012') 0.04875 100 2 3 1;
 datenum('02/15/2031') 0.05375 100 2 3 1];

Choose a settlement date.

Settle = datenum('08/20/2002');

Assume these clean prices for the bonds.

Prices = [98.97467;
98.58044;

100.10534;
98.18054;

PrepaySpeed (Optional) Relation of the conditional payment rate
(CPR) to the benchmark model. Default = end of month’s
CPR. Set PrepaySpeed to [] if you input a customized
prepayment matrix.

PrepayMatrix (Optional) Customized prepayment matrix. A matrix of
size max(TermRemaining)-by-NMBS. Missing values are
padded with NaNs. Each column corresponds to a
mortgage-backed security, and each row corresponds to
each month after settlement.
4-81

mbsyield2oas
101.38136;
99.25411];

Use this formula to compute spot compounding for the bonds.

SpotCompounding = 2*ones(size(Prices));

Compute the zero curve.

[ZeroRatesP, CurveDatesP] = zbtprice(Bonds, Prices, Settle);
ZeroCurve = [CurveDatesP, ZeroRatesP, SpotCompounding];

Assign parameters.

Price = 95;
Maturity = datenum('02-Jan-2030');
IssueDate = datenum('02-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Interpolation = 1;
PrepaySpeed = [0 50 100];

Compute the yield and from the yield compute the option-adjusted spread.

[mbsyld, beyld] = mbsyield(Price, Settle, ...
Maturity, IssueDate, GrossRate, CouponRate, Delay, PrepaySpeed);

OAS = mbsyield2oas(ZeroCurve, mbsyld, Settle, ...
Maturity, IssueDate, GrossRate, CouponRate, Delay, ...
Interpolation, PrepaySpeed)

OAS =

26.0502
28.6348
31.2222

See Also mbsoas2price, mbsoas2yield, mbsprice2oas

4-82

mbsyield2speed
4mbsyield2speedPurpose Implied PSA prepayment speeds given yield

Syntax [ImpSpdOnYld, ImpSpdOnDur, ImpSpdOnCnv] = mbsyield2speed(Yield,
Settle, Maturity, IssueDate, GrossRate, PrepayMatrix, CouponRate,
Delay)

Arguments

All inputs (except PrepayMatrix) are number of mortgage-backed securities
(NMBS) by 1 vectors.

Description [ImpSpdOnYld, ImpSpdOnDur, ImpSpdOnCnv] = mbsyield2speed(Yield,
Settle, Maturity, IssueDate, GrossRate, PrepayMatrix, CouponRate,
Delay) computes PSA prepayment speeds implied by pool yields and projected
(user-defined) prepayment vectors. The calculated PSA speed produces the
same yield, modified duration, or modified convexity, depending upon the
output requested.

ImpSpdOnPrc calculates the equivalent PSA benchmark prepayment
speed for the passthrough to carry the same price.

Yield Mortgage yield, compounded monthly, in decimal.

Settle Settlement date. A serial date number or date string.
Settle must be earlier than or equal to Maturity.

Maturity Maturity date. A serial date number or date string.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

PrepayMatrix Customized prepayment matrix. A matrix of size
max(TermRemaining)-by-NMBS. Missing values are
padded with NaNs. Each column corresponds to a
mortgage-backed security, and each row corresponds to
each month after settlement.

CouponRate (Optional) Net coupon rate, in decimal.
Default = GrossRate.

Delay (Optional) Delay (in days) between payment from
homeowner and receipt by bondholder. Default = 0 (no
delay between payment and receipt.
4-83

mbsyield2speed
ImpSpdOnDur calculates the equivalent PSA benchmark prepayment
speed for the passthrough to carry the same modified duration.

ImpSpdOnCnv calculates the equivalent PSA benchmark prepayment
speed for the passthrough to carry the same modified convexity.

All outputs are NMBS-by-1 vectors.

Examples Calculate the equivalent PSA benchmark prepayment speeds for a security
with these characteristics and prepayment matrix.

Yield = 0.065;
Settle = datenum('1-Jan-2000');
Maturity = datenum('1-Jan-2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
PrepayMatrix = 0.005*ones(360,1);
CouponRate = 0.075;
Delay = 14;

[ImpSpdOnYld, ImpSpdOnDur, ImpSpdOnCnv] = ...
mbsyield2speed(Yield, Settle, Maturity, IssueDate, GrossRate, ...
PrepayMatrix, CouponRate, Delay)

ImpSpdOnYld =

 117.7644

ImpSpdOnDur =

 116.7436

ImpSpdOnCnv =

 108.3309
4-84

mbsyield2speed
See Also mbsyield, mbsprice2speed

References PSA Uniform Practices, SF-49
4-85

psaspeed2default
4psaspeed2defaultPurpose Benchmark default

Syntax [ADRPSA, MDRPSA] = psaspeed2default(DefaultSpeed)

Arguments

Description [ADRPSA, MDRPSA] = psaspeed2default(DefaultSpeed) computes the
benchmark default on the performing balance of mortgage-backed securities
per PSA benchmark speed.

ADRPSA is the PSA default rate, in decimal (360-by-1).

MDRPSA is the PSA monthly default rate, in decimal (360-by-1).

Examples Given a mortgage-backed security with annual speed set at the PSA default
benchmark, compute the default rates.

DefaultSpeed = 100;

[ADRPSA, MDRPSA] = psaspeed2default(DefaultSpeed);

See Also psaspeed2rate

DefaultSpeed Annual speed relative to the benchmark. PSA
benchmark = 100.
4-86

psaspeed2rate
4psaspeed2ratePurpose Single monthly mortality rate given PSA speed

Syntax [CPRPSA, SMMPSA]= psaspeed2rate(PSASpeed)

Arguments

Description [CPRPSA, SMMPSA]= psaspeed2rate(PSASpeed) calculates vectors of PSA
prepayments, each containing 360 prepayment elements, to represent the 360
months in a 30-year mortgage pool.

CPRPSA is the PSA conditional prepayment rate, in decimal [360-by-1].

SMMPSA is the PSA single monthly mortality rate, in decimal [360-by-1].

Examples Given a mortgage-backed security with annual speed set at the PSA default
benchmark, compute the prepayment and mortality rates.

PSASpeed = [100 200];

[CPRPSA, SMMPSA]= psaspeed2rate(PSASpeed);

View a plot of the output.

psaspeed2rate(PSASpeed)

PSASpeed Any value > 0 representing the annual speed relative to
the benchmark. PSA benchmark = 100.
4-87

psaspeed2rate
See Also psaspeed2default
4-88

stepcpncfamounts
4stepcpncfamountsPurpose Cash flow amounts and times for bonds with stepped coupons

Syntax [CFlows, CDates, CTimes] = stepcpncfamounts(Settle, Maturity,
ConvDates, CouponRates, Period, Basis, EndMonthRule, Face)

Arguments Settle Settlement date. A scalar or vector of serial date
numbers. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A scalar or vector of serial date numbers.

ConvDates Matrix of serial date numbers representing conversion
dates after Settle. Size = number of instruments by
maximum number of conversions. Fill unspecified
entries with NaN.

CouponRates Matrix indicating the coupon rates for each bond in
decimal form. Size = number of instruments by
maximum number of conversions + 1. First column of
this matrix contains rates applicable between Settle
and the first conversion date (date in the first column of
ConvDates). Fill unspecified entries with NaN. See Note
below.

Period (Optional) Coupons per year of the bond. A vector of
integers. Allowed values are 0, 1, 2, 3, 4, 6, and 12.
Default = 2.

Basis (Optional) Day-count basis of the instrument. A vector of
integers. 0 = actual/actual (default), 1 = 30/360 (SIA),
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA),
5 = 30/360 (ISDA), 6 = 30/360 (European),
7 = act/365 (Japanese).
4-89

stepcpncfamounts
All arguments must be scalars or number of bonds (NUMBONDS) by 1 vectors,
except for ConvDates and CouponRates.

Note ConvDates has the same number of rows as CouponRates to reflect the
same number of bonds. However, ConvDates has one less column than
CouponRates. This situation is illustrated by
Settle---------ConvDate1-----------ConvDate2------------Maturity

Rate1 Rate2 Rate3

Description [CFlows, CDates, CTimes] = stepcpncfamounts(Settle, Maturity,
ConvDates, CouponRates, Period, Basis, EndMonthRule, Face) returns
matrices of cash flow amounts, cash flow dates, and time factors for a portfolio
of NUMBONDS stepped coupon bonds.

CFlows is a matrix of cash flow amounts. The first entry in each row vector is a
negative number indicating the accrued interest due at settlement. If no
accrued interest is due, the first column is zero.

CDates is a matrix of cash flow dates in serial date number form. At least
two columns are always present, one for settlement and one for maturity.

CTimes is a matrix of time factors for the SIA semiannual price/yield
conversion.

DiscountFactor = (1 + Yield/2).^(-TFactor)

Time factors are in units of semiannual coupon periods. In computing time
factors we use SIA actual/actual conventions for all time factor calculations.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies
only when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. 1 = set rule on (default),
meaning that a bond’s coupon payment date is always
the last actual day of the month.

Face (Optional) Face value of each bond in the portfolio.
Default = 100.
4-90

stepcpncfamounts
Note For bonds with fixed coupons, use cfamounts. MATLAB generates an
error if you use a fixed-coupon bond with stepcpncfamounts.

Examples This example generates stepped cash flows for three different bonds, all paying
interest semiannually. Their life span is about 18-19 years each:

• Bond A has two conversions, but the first one occurs on the settlement date
and immediately expires.

• Bond B has three conversions, with conversion dates exactly on the coupon
dates.

• Bond C has three conversions, with some conversion dates not on the coupon
dates. It has the longest maturity. This case illustrates that only cash flows
for full periods after conversion dates are affected, as illustrated below.

The following table illustrates the interest rate characteristics of this bond
portfolio.

Current Rate New Rate Starts Pay Current Rate Pay New Rate

Coupon Date Conversion Date Next Coupon Date Next Coupon Date

Bond A
Dates

Bond A
Rates

Bond B
Dates

Bond B
Rates

Bond C Dates Bond C Rates

Settle
(02-Aug-92)

7.5% Settle
(02-Aug-92)

7.5% Settle
(02-Aug-92)

2.5%

First
Conversion
(02-Aug-92)

8.875% First
Conversion
(15-Jun-97))

8.875% First
Conversion
(14-Jun-97))

5.0%

Second
Conversion
(15-Jun-03)

9.25% Second
Conversion
(15-Jun-01)

9.25% Second
Conversion
(14-Jun-01)

7.5%
4-91

stepcpncfamounts
Settle = datenum('02-Aug-1992');

ConvDates = [datenum('02-Aug-1992'), datenum('15-Jun-2003'), nan;
datenum('15-Jun-1997'), datenum('15-Jun-2001'),...
datenum('15-Jun-2005');
datenum('14-Jun-1997'), datenum('14-Jun-2001'),...
datenum('14-Jun-2005')];

Maturity = [datenum('15-Jun-2010');

datenum('15-Jun-2010');
datenum('15-Jun-2011')];

CouponRates = [0.075 0.08875 0.0925 nan;
0.075 0.08875 0.0925 0.1;
0.025 0.05 0.0750 0.1];

Basis = 1;
Period = 2;
EndMonthRule = 1;
Face = 100;

Call stepcpncfamounts to compute cash flows and timings.

[CFlows, CDates, CTimes] = stepcpncfamounts(Settle, Maturity, ...
ConvDates, CouponRates);

Visualize the third bond cash flows (2.5 - 5 - 7.5 - 10).

cfplot(CDates(3,:),CFlows(3,:));
xlabel('Dates in Serial Number Format')
ylabel('Relative Amounts of Cash Flows')
title('CashFlow of 2.5 - 5 - 7.5 - 10 Stepped Coupon Bond')

Maturity
(15-Jun-10)

NaN Third
Conversion
(15-Jun-05)

10.0% Third
Conversion
(14-Jun-05)

10.0%

Maturity
(15-Jun-10)

NaN Maturity
(15-Jun-11)

NaN
4-92

stepcpncfamounts
See Also stepcpnprice, stepcpnyield
4-93

stepcpnprice
4stepcpnpricePurpose Price a bond with stepped coupons

Syntax [Price, AccruedInterest] = stepcpnprice(Yield, Settle, Maturity,
ConvDates, CouponRates, Period, Basis, EndMonthRule, Face)

Arguments Yield Scalar or vector containing yield to maturity of
instruments.

Settle Settlement date. A scalar or vector of serial date
numbers. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A scalar or vector of serial date numbers.

ConvDates Matrix of serial date numbers representing conversion
dates after Settle. Size = number of instruments by
maximum number of conversions. Fill unspecified
entries with NaN.

CouponRates Matrix indicating the coupon rates for each bond in
decimal form. Size = number of instruments by
maximum number of conversions + 1. First column of
this matrix contains rates applicable between Settle
and the first conversion date (date in the first column of
ConvDates). Fill unspecified entries with NaN. See Note
below.

Period (Optional) Coupons per year of the bond. A vector of
integers. Allowed values are 0, 1, 2, 3, 4, 6, and 12.
Default = 2.

Basis (Optional) Day-count basis of the instrument. A vector of
integers. 0 = actual/actual (default), 1 = 30/360 (SIA),
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA),
5 = 30/360 (ISDA), 6 = 30/360 (European),
7 = act/365 (Japanese).
4-94

stepcpnprice
All arguments must be scalars or number of bonds (NUMBONDS) by 1 vectors,
except for ConvDates and CouponRates.

Note ConvDates has the same number of rows as CouponRate to reflect the
same number of bonds. However, ConvDates has one less column than
CouponRate. This situation is illustrated by
Settle---------ConvDate1-----------ConvDate2------------Maturity

Rate1 Rate2 Rate3

Description [Price, AccruedInterest] = stepcpnprice(Yield, Settle, Maturity,
ConvDates, CouponRates, Period, Basis, EndMonthRule, Face)
computes the price of bonds with stepped coupons given the yield to maturity.
The function supports any number of conversion dates.

Price is a NUMBONDS-by-1 vector of clean prices.

AccruedInterest is a NUMBONDS-by-1 vector of accrued interest payable at
settlement dates.

Note For bonds with fixed coupons, use bndprice. You will receive the error
incorrect number of inputs if you use a fixed-coupon bond with
stepcpnprice.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies
only when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. 1 = set rule on (default),
meaning that a bond’s coupon payment date is always
the last actual day of the month.

Face (Optional) Face value of each bond in the portfolio.
Default = 100.
4-95

stepcpnprice
 Examples Compute the price and accrued interest due on a portfolio of stepped coupon
bonds having a yield of 7.221%, given three conversion scenarios:

• Bond A has two conversions, the first one falling on the settle date and
immediately expiring.

• Bond B has three conversions, with conversion dates exactly on the coupon
dates.

• Bond C has three conversions, with one or more conversion dates not on
coupon dates. This case illustrates that only cash flows for full periods after
conversion dates are affected, as illustrated below.

The following table illustrates the interest rate characteristics of this bond
portfolio.

Current Rate New Rate Starts Pay Current Rate Pay New Rate

Coupon Date Conversion Date Next Coupon Date Next Coupon Date

Bond A
Dates

Bond A
Rates

Bond B
Dates

Bond B
Rates

Bond C
Dates

Bond C
Rates

Settle
(02-Aug-92)

7.5% Settle
(02-Aug-92)

7.5% Settle
(02-Aug-92)

7.5%

First
Conversion
(02-Aug-92)

8.875% First
Conversion
(15-Jun-97))

8.875% First
Conversion
(14-Jun-97))

8.875%

Second
Conversion
(15-Jun-03)

9.25% Second
Conversion
(15-Jun-01)

9.25% Second
Conversion
(14-Jun-01)

9.25%

Maturity
(15-Jun-10)

NaN Third
Conversion
(15-Jun-05)

10.0% Third
Conversion
(14-Jun-05)

10.0%

Maturity
(15-Jun-10)

NaN Maturity
(15-Jun-10)

NaN
4-96

stepcpnprice
Yield = 0.07221;
Settle = datenum('02-Aug-1992');
ConvDates = [datenum('02-Aug-1992'), datenum('15-Jun-2003'), nan;
 datenum('15-Jun-1997'), datenum('15-Jun-2001'),...

datenum('15-Jun-2005');
 datenum('14-Jun-1997'), datenum('14-Jun-2001'),...

datenum('14-Jun-2005')];
Maturity = datenum('15-Jun-2010');

CouponRates = [0.075 0.08875 0.0925 nan;
 0.075 0.08875 0.0925 0.1;
 0.075 0.08875 0.0925 0.1];
Basis = 1;
Period = 2;
EndMonthRule = 1;
Face = 100;

[Price, AccruedInterest] = ...
stepcpnprice(Yield, Settle, Maturity, ConvDates, CouponRates, ...
Period, Basis, EndMonthRule, Face)

Price =

 117.3824
 113.4339
 113.4339

AccruedInterest =

 1.1587
 0.9792
 0.9792

See Also bndprice, cdprice, stepcpncfamounts, stepcpnyield, tbillprice, zeroprice

References This function adheres to SIA Fixed Income Securities Formulas for Price, Yield,
and Accrued Interest, Volume 1, 3rd edition, pp. 120 - 123, on zero-coupon
instruments pricing.
4-97

stepcpnyield
4stepcpnyieldPurpose Yield to maturity of a bond with stepped coupons

Syntax Yield = stepcpnyield(Price, Settle, Maturity, ConvDates, CouponRate,
Period, Basis, EndMonthRule, Face)

Arguments Price Vector containing price of the bonds.

Settle Settlement date. A vector of serial date numbers. Settle
must be earlier than or equal to Maturity.

Maturity Maturity date. A vector of serial date numbers.

ConvDates Matrix of serial date numbers representing conversion
dates after Settle. Size = number of instruments by
maximum number of conversions. Fill unspecified
entries with NaN.

CouponRates Matrix indicating the coupon rates for each bond in
decimal form. Size = number of instruments by
maximum number of conversions + 1. First column of
this matrix contains rates applicable between Settle
and the first conversion date (date in the first column of
ConvDates). Fill unspecified entries with NaN. See Note
below.

Period (Optional) Coupons per year of the bond. A vector of
integers. Allowed values are 0, 1, 2, 3, 4, 6, and 12.
Default = 2.

Basis (Optional) Day-count basis of the instrument. A vector of
integers. 0 = actual/actual (default), 1 = 30/360 (SIA),
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA),
5 = 30/360 (ISDA), 6 = 30/360 (European),
7 = act/365 (Japanese).
4-98

stepcpnyield
All arguments must be number of bonds (NUMBONDS) by 1 vectors, except for
ConvDates and CouponRate.

Note ConvDates has the same number of rows as CouponRate to reflect the
same number of bonds. However, ConvDates has one less column than
CouponRate. This situation is illustrated by
Settle---------ConvDate1-----------ConvDate2------------Maturity

Rate1 Rate2 Rate3

Description Yield = stepcpnyield(Price, Settle, Maturity, ConvDates, CouponRate,
Period, Basis, EndMonthRule, Face) computes the yield to maturity of
bonds with stepped coupons given the price. The function supports any number
of conversion dates.

Yield is a NUMBONDS-by-1 vector of yields to maturity in decimal form.

Note For bonds with fixed coupons, use bndyield. You will receive the error
incorrect number of inputs if you use a fixed-coupon bond with
stepcpnyield.

Examples Find the yield to maturity of three stepped coupon bonds of known price, given
three conversion scenarios:

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies
only when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. 1 = set rule on (default),
meaning that a bond’s coupon payment date is always
the last actual day of the month.

Face (Optional) Face value of each bond in the portfolio.
Default = 100.
4-99

stepcpnyield
• Bond A has two conversions, the first one falling on the settle date and
immediately expiring.

• Bond B has three conversions, with conversion dates exactly on the coupon
dates.

• Bond C has three conversions, with one or more conversion dates not on
coupon dates. This case illustrates that only cash flows for full periods after
conversion dates are affected, as illustrated below.

The following table illustrates the interest rate characteristics of this bond
portfolio.

Current Rate New Rate Starts Pay Current Rate Pay New Rate

Coupon Date Conversion Date Next Coupon Date Next Coupon Date

Bond A
Dates

Bond A
Rates

Bond B
Dates

Bond B
Rates

Bond C
Dates

Bond C
Rates

Settle
(02-Aug-92)

7.5% Settle
(02-Aug-92)

7.5% Settle
(02-Aug-92)

7.5%

First
Conversion
(02-Aug-92)

8.875% First
Conversion
(15-Jun-97))

8.875% First
Conversion
(14-Jun-97))

8.875%

Second
Conversion
(15-Jun-03)

9.25% Second
Conversion
(15-Jun-01)

9.25% Second
Conversion
(14-Jun-01)

9.25%

Maturity
(15-Jun-10)

NaN Third
Conversion
(15-Jun-05)

10.0% Third
Conversion
(14-Jun-05)

10.0%

Maturity
(15-Jun-10)

NaN Maturity
(15-Jun-10)

NaN
4-100

stepcpnyield
format long
Price = [117.3824; 113.4339; 113.4339];
Settle = datenum('02-Aug-1992');

ConvDates = [datenum('02-Aug-1992'), datenum('15-Jun-2003'), nan;
datenum('15-Jun-1997'), datenum('15-Jun-2001'), datenum('15-Jun-2005');
datenum('14-Jun-1997'), datenum('14-Jun-2001'), datenum('14-Jun-2005')];

Maturity = datenum('15-Jun-2010');

CouponRates = [0.075 0.08875 0.0925 nan;
 0.075 0.08875 0.0925 0.1;
 0.075 0.08875 0.0925 0.1];
Basis = 1;
Period = 2;
EndMonthRule = 1;
Face = 100;

Yield = stepcpnyield(Price, Settle, Maturity, ConvDates, ...
CouponRates, Period, Basis, EndMonthRule, Face)

Yield =

0.07221440204915
0.07221426780036
0.07221426780036

See Also bndprice, cdprice, stepcpncfamounts, stepcpnprice, tbillprice, zeroprice

References This function adheres to SIA Fixed Income Securities Formulas for Price, Yield,
and Accrued Interest, Volume 1, 3rd edition, pp. 120 - 123, on zero-coupon
instruments pricing.
4-101

tbilldisc2yield
4tbilldisc2yieldPurpose Convert Treasury bill discount to equivalent yield

Syntax [BEYield MMYield] = tbilldisc2yield(Discount, Settle, Maturity)

Arguments

Inputs must either be a scalar or a vector of size equal to the number of
Treasury bills (NTBILLS) by 1 or 1-by-NTBILLS.

Description [BEYield MMYield] = tbilldisc2yield(Yield, Settle, Maturity)
converts the discount rate on Treasury bills into their respective
money-market or bond-equivalent yields.

BEYield is an NTBILLS-by-1 vector of bond-equivalent yields. The
bond-equivalent yield basis is actual/365.

MMYield is an NTBILLS-by-1 vector of money-market yields. The money-market
yield basis is actual/360.

Discount Discount rate of Treasury bills in decimal. The discount
rate basis is actual/360.

Settle Settlement date. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date.
4-102

tbilldisc2yield
Examples Given a Treasury bill with these characteristics, compute the bond-equivalent
and money-market yields.

Discount = 0.0497;
Settle = '01-Oct-02';
Maturity = '31-Mar-03';

[BEYield MMYield] = tbilldisc2yield(Discount, Settle, Maturity)

BEYield =

 0.0517

MMYield =

 0.0510

See Also tbillyield2disc, zeroyield

References This function adheres to SIA Fixed Income Securities Formulas for Price, Yield,
and Accrued Interest, Volume 1, 3rd edition, pp. 44 - 45 (on Treasury bills), and
Money Market and Bond Calculation by Stigum and Robinson.
4-103

tbillprice
4tbillpricePurpose Price a Treasury bill

Syntax Price = tbillprice(Rate, Settle, Maturity, Type)

Arguments

All arguments must be a scalar or a number of Treasury bills (NTBILLS) by 1 or
1-by-NTBILLS vector.

Note The bond-equivalent yield basis is actual/365. The money-market yield
basis is actual/360. The discount rate basis is actual/360.

Description Price = tbillprice(Rate, Settle, Maturity, Type) computes the price of
a Treasury bill given a yield or discount rate.

Price is an NTBILLS-by-1 vector of T-bill prices for every $100 face.

Rate Bond-equivalent yield, money-market yield, or discount
rate in decimal.

Settle Settlement date. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date.

Type (Optional) Rate type. Determines how to interpret values
entered in Rate. 1 = money market (default).
2 = bond-equivalent. 3 = discount rate.
4-104

tbillprice
Examples Example 1. Given a Treasury bill with these characteristics, compute the price
of the Treasury bill using the bond-equivalent yield as input.

Rate = 0.045;
Settle = '01-Oct-02';
Maturity = '31-Mar-03';

Type = 2;

Price = tbillprice(Rate, Settle, Maturity, Type)

Price =

 97.8172

Example 2. Use tbillprice to price a portfolio of Treasury bills.

Rate = [0.045; 0.046];
Settle = {'02-Jan-02'; '01-Mar-02'};
Maturity = {'30-June-02'; '30-June-02'};
Type = [2 3];

Price = tbillprice(Rate, Settle, Maturity, Type)

Price =

 97.8408
 98.4539

See Also tbillyield, zeroprice

References This function adheres to SIA Fixed Income Securities Formulas for Price, Yield,
and Accrued Interest, Volume 1, 3rd edition, pp. 44 - 45 (on Treasury bills), and
Money Market and Bond Calculation by Stigum and Robinson.
4-105

tbillrepo
4tbillrepoPurpose Break-even discount of repurchase agreement

Syntax TBEDiscount = tbillrepo(RepoRate, InitialDiscount, PurchaseDate,
SaleDate, Maturity)

Arguments

All arguments must be a scalar or a number of Treasury bills (NTBILLS) by 1 or
a 1-by-NTBILLS vector.

All dates must be in serial date number format.

Description TBEDiscount = tbillrepo(RepoRate, InitialDiscount, PurchaseDate,
SaleDate, Maturity) computes the true break-even discount of a repurchase
agreement. TBEDiscount can be a scalar or vector of size NTBills-by-1.

RepoRate The annualized, 360-day based repurchase rate, in
decimal.

InitialDiscount Discount on the Treasury bill on the day of purchase, in
decimal.

PurchaseDate Date the Treasury bill is purchased.

SaleDate Date the Treasury bill repurchase term is due.

Maturity Treasury bill maturity date.
4-106

tbillrepo
Examples Compute the true break-even discount on a Treasury bill repurchase
agreement.

RepoRate = [0.045; 0.0475];
InitialDiscount = 0.0475;
PurchaseDate = '3-Jan-2002';
SaleDate = '3-Feb-2002';
Maturity = '3-Apr-2002';

TBEDiscount = tbillrepo(RepoRate, InitialDiscount,...
PurchaseDate, SaleDate, Maturity)

TBEdiscount =

 0.0491
 0.0478

References This function adheres to SIA Fixed Income Securities Formulas for Price, Yield,
and Accrued Interest, Volume 1, 3rd edition, pp. 44 - 45 (on Treasury bills), and
Money Market and Bond Calculation by Stigum and Robinson.
4-107

tbillval01
4tbillval01Purpose Value of one basis point

Syntax [Val01Disc, Val01MMY, Val01BEY] = tbillval01(Settle, Maturity)

Arguments

Description [Val01Disc, Val01MMY, Val01BEY] = tbillval01(Settle, Maturity)
calculates the value of one basis point of $100 Treasury bill face value on the
discount rate, money-market yield, or bond-equivalent yield.

Val01Disc is the value of one basis point of discount rate.

Val01MMY is the value of one basis point of money-market yield.

Val01BEY is the value of one basis point of bond-equivalent yield.

All outputs are of size equal to the number of Treasury bills (NTBILLS) by 1.

Examples Given a Treasury bill with these settle and maturity dates, compute the value
of one basis point.

Settle = '01-Mar-03';
Maturity = '30-June-03';
[Val01Disc, Val01MMY, Val01BEY] = tbillval01(Settle, Maturity)

Val01Disc =

 0.0034

Val01MMY =

 0.0034

Val01BEY =

 0.0033

See Also tbilldisc2yield, tbillprice, tbillyield, tbillyield2disc

Settle Settlement date of Treasury bills. Settle must be earlier
than or equal to Maturity.

Maturity Maturity date of Treasury bills.
4-108

tbillval01
References This function adheres to SIA Fixed Income Securities Formulas for Price, Yield,
and Accrued Interest, Volume 1, 3rd edition, pp 108 - 115, on zero coupon
instrument pricing.
4-109

tbillyield
4tbillyieldPurpose Yield on a Treasury bill

Syntax [MMYield, BEYield, Discount] = tbillyield(Price, Settle, Maturity)

Arguments

All arguments must be a scalar or a number of Treasury bills (NTBILLS) by 1 or
1-by-NTBILLS vector.

Description [MMYield, BEYield, Discount] = tbillyield(Price, Settle, Maturity)
computes the yield of U.S. Treasury bills given Price, Settle, and Maturity.
MMYield is the money-market yields of the Treasury bills. BEYield is the bond
equivalent yields of the Treasury bills. Discount is the discount rates of the
Treasury bills.

All outputs are NTBILLS-by-1 vectors.

Note The money-market yield basis is actual/360. The bond-equivalent yield
basis is actual/365. The discount rate basis is actual/360.

Examples Given a Treasury bill with these characteristics, compute the money-market
and bond-equivalent yields and the discount rate.

Price = 98.75;
Settle = '01-Oct-02';
Maturity = '31-Mar-03';

[MMYield, BEYield, Discount] = tbillyield(Price, Settle,...
Maturity)

MMYield =

 0.0252

Price Price of Treasury bills for every $100 face value.

Settle Settlement date. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date.
4-110

tbillyield
BEYield =

 0.0255

Discount =

 0.0249

See Also tbilldisc2yield, tbillprice, tbillyield2disc, zeroyield

References This function adheres to SIA Fixed Income Securities Formulas for Price, Yield,
and Accrued Interest, Volume 1, 3rd edition, pp. 44 - 45 (on Treasury bills), and
Money Market and Bond Calculation by Stigum and Robinson.
4-111

tbillyield2disc
4tbillyield2discPurpose Convert Treasury bill yield to equivalent discount

Syntax Discount = tbillyield2disc(Yield, Settle, Maturity, Type)

Arguments

Inputs must either be a scalar or a vector of size equal to the number of
Treasury bills (NTBILLS) by 1 or 1-by-NTBILLS.

Note The money-market yield basis is actual/360. The bond-equivalent yield
basis is actual/365. The discount rate basis is actual/360.

Description Discount = tbillyield2disc(Yield, Settle, Maturity, Type) converts
the yield on a number of Treasury bills into their respective discount rates.

Discount is a NTBILLS-by-1 vector of T-bill discount rates.

Examples Given a Treasury bill with these characteristics, compute the discount rate on
a money-market basis.

Yield = 0.0497;
Settle = '01-Oct-02';
Maturity = '31-Mar-03';

Discount = tbillyield2disc(Yield, Settle, Maturity)

Discount =

 0.0485

Yield Yield of Treasury bills in decimal.

Settle Settlement date. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date.

Type (Optional) Yield type. Determines how to interpret
values entered in Yield. 1 = money market (default).
2 = bond-equivalent.
4-112

tbillyield2disc
Now recompute the discount on a bond-equivalent basis.

Discount = tbillyield2disc(Yield, Settle, Maturity, 2)

Discount =

 0.0478

See Also tbilldisc2yield

References This function adheres to SIA Fixed Income Securities Formulas for Price, Yield,
and Accrued Interest, Volume 1, 3rd edition, pp. 44 - 45 (on Treasury bills), and
Money Market and Bond Calculation by Stigum and Robinson.
4-113

tfutbyprice
4tfutbypricePurpose Future prices of Treasury bonds given the spot price

Syntax QtdFutPrice = tfutbyprice(SpotCurve, Price, SettleFut, MatFut,
ConvFactor, CouponRate, Maturity, Interpolation)

Arguments

Inputs (except SpotCurve) must either be a scalar or a vector of size equal to
the number of Treasury futures (NFUT) by 1 or 1-by-NFUT.

Description QtdFutPrice = tfutbyprice(SpotCurve, Price, SettleFut, MatFut,
ConvFactor, CouponRate, Maturity, Interpolation) computes future
prices of Treasury notes and bonds given the spot price.

Examples Determine the future price of two Treasury bonds based upon a spot rate curve
constructed from data for November 14, 2002.

SpotCurve Treasury spot curve. A number of futures (NFUT) by 3
matrix in the form of
[SpotDates SpotRates Compounding]

Allowed compounding values are -1, 1, 2 (default), 3, 4,
and 12.

Price Scalar or vector containing prices of Treasury bonds or
notes per $100 notional. Use bndprice for theoretical
value of bond.

SettleFut Scalar or vector of identical elements containing
settlement date of futures contract.

MatFut Scalar or vector containing maturity dates (or
anticipated delivery dates) of futures contract.

ConvFactor Conversion factor. See convfactor.

CouponRate Scalar or vector containing underlying bond annual
coupon in decimal.

Maturity Scalar or vector containing underlying bond maturity.

Interpolation (Optional) Interpolation method. Available methods are
(0) nearest, (1) linear, and (2) cubic. Default = 1. See
interp1 for more information.
4-114

tfutbyprice
% Constructing spot curve from Nov 14, data
Bonds = [datenum('02/13/2003'), 0;
 datenum('05/15/2003'), 0;
 datenum('10/31/2004'), 0.02125;
 datenum('11/15/2007'), 0.03;
 datenum('11/15/2012'), 0.04;
 datenum('02/15/2031'), 0.05375];

Yields = [1.20; 1.25; 1.86; 2.99; 4.02; 4.93]/100;

Settle = datenum('11/15/2002');

[ZeroRates, CurveDates] = ...
zbtyield(Bonds, Yields, Settle);

SpotCurve = [CurveDates, ZeroRates];

% Calculating a particular bond s future quoted price
RefDate = [datenum('1-Dec-2002'); datenum('1-Mar-2003')];
MatFut = [datenum('15-Dec-2002'); datenum('15-Mar-2003')];
Maturity = [datenum('15-Aug-2009');datenum('15-Aug-2010')];
CouponRate = [0.06;0.0575];
ConvFactor = convfactor(RefDate, Maturity, CouponRate);
Price = [114.416; 113.171];
Interpolation = 1;

QtdFutPrice = tfutbyprice(SpotCurve, Price, Settle, ...
MatFut, ConvFactor, CouponRate, Maturity, Interpolation)

QtdFutPrice =

113.8129
112.4986

This compares with closing prices of 113.93 and 112.68. The differences are
expected due to the nature of the contract and data that is not directly
comparable.

See Also convfactor, tfutbyyield
4-115

tfutbyyield
4tfutbyyieldPurpose Future prices of Treasury bonds given current yield

Syntax QtdFutPrice = tfutbyyield(SpotCurve, Yield, SettleFut, MatFut,
ConvFactor, CouponRate, Maturity, Interpolation)

Arguments

Inputs (except SpotCurve) must either be a scalar or a vector of size equal to
the number of Treasury futures (NFUT) by 1 or 1-by-NFUT.

Description QtdFutPrice = tfutbyyield(SpotCurve, Yield, SettleFut, MatFut,
ConvFactor, CouponRate, Maturity, Interpolation) computes future
prices of Treasury notes and bonds given current yields of Treasury
bonds/notes.

Examples Determine the future price of two Treasury bonds based upon a spot rate curve
constructed from data for November 14, 2002.

SpotCurve Treasury spot curve. A number of futures (NFUT) by 3
matrix in the form of
[SpotDates SpotRates Compounding]

Allowed compounding values are -1, 1, 2 (default), 3, 4,
and 12.

Yield Scalar or vector containing yield to maturity of bonds.
Use bndyield for theoretical value of bond yield.

SettleFut Scalar or vector of identical elements containing
settlement date of futures contract.

MatFut Scalar or vector containing maturity dates (or
anticipated delivery dates) of futures contract.

ConvFactor Conversion factor. See convfactor.

CouponRate Scalar or vector containing underlying bond annual
coupon in decimal.

Maturity Scalar or vector containing underlying bond maturity.

Interpolation (Optional) Interpolation method. Available methods are
(0) nearest, (1) linear, and (2) cubic. Default = 1. See
interp1 for more information.
4-116

tfutbyyield
% Constructing spot curve from Nov 14, data
Bonds = [datenum('02/13/2003'), 0;
 datenum('05/15/2003'), 0;
 datenum('10/31/2004'), 0.02125;
 datenum('11/15/2007'), 0.03;
 datenum('11/15/2012'), 0.04;
 datenum('02/15/2031'), 0.05375];

Yields = [1.20; 1.25; 1.86; 2.99; 4.02; 4.93]/100;

Settle = datenum('11/15/2002');

[ZeroRates, CurveDates] = ...
zbtyield(Bonds, Yields, Settle);

SpotCurve = [CurveDates, ZeroRates];

% Calculating a particular bond s future quoted price
RefDate = [datenum('1-Dec-2002'); datenum('1-Mar-2003')];
MatFut = [datenum('15-Dec-2002'); datenum('15-Mar-2003')];
Maturity = [datenum('15-Aug-2009');datenum('15-Aug-2010')];
CouponRate = [0.06;0.0575];
ConvFactor = convfactor(RefDate, Maturity, CouponRate);
Yield = [0.03576; 0.03773];
Interpolation = 1;

QtdFutPrice = tfutbyyield(SpotCurve, Yield, Settle, ...
MatFut, ConvFactor, CouponRate, Maturity, Interpolation)

QtdFutPrice =

113.8136
112.4991

This compares with closing prices of 113.93 and 112.68. The differences are
expected because of the nature of the contract and data that are not directly
comparable.

See Also convfactor, tfutbyprice
4-117

tfutimprepo
4tfutimprepoPurpose Implied simple annual repurchase rate to prevent arbitrage

Syntax ImpliedRepo = tfutimprepo(ReinvestData, Price, QtdFutPrice, Settle,
MatFut, ConvFactor, CouponRate, Maturity)

Arguments

Inputs (except ReinvestData) must either be a scalar or a vector of size equal
to the number of Treasury futures (NFUT) by 1 or 1-by-NFUT.

Description ImpliedRepo = tfutimprepo(ReinvestData, Price, QtdFutPrice, Settle,
MatFut, ConvFactor, CouponRate, Maturity) computes the implied repo
rate that prevents arbitrage of Treasury bond futures, given the clean price at
the settlement and delivery dates.

ImpliedRepo is the implied annual repo rate, in decimal, with an actual/360
basis.

ReinvestData Number of futures (NFUT) by 2 matrix of rates and bases
for the reinvestment of intervening coupons in the form of
[ReinvestRate ReinvestBasis]

ReinvestRate is the simple reinvestment rate, in
decimal. Specify ReinvestBasis as 0 = not reinvested,
2 = actual/360, or 3 = actual/365.

Price Current bond price per $100 notional.

QtdFutPrice Quoted bond futures price per $100 notional.

Settle Settlement/valuation date of futures contract.

MatFut Maturity date (or anticipated delivery dates) of futures
contract.

ConvFactor Conversion factor. See convfactor.

CouponRate Underlying bond annual coupon, in decimal.

Maturity Underlying bond maturity date.
4-118

tfutimprepo
Examples Compute the implied repo rate given the following set of data.

ReinvestData = [0.018 3];
Price = [114.4160; 113.1710];
QtdFutPrice = [114.1201; 113.7090];
Settle = datenum('11/15/2002');
MatFut = [datenum('15-Dec-2002'); datenum('15-Mar-2003')];
ConvFactor = [1; 0.9854];
CouponRate = [0.06; 0.0575];
Maturity = [datenum('15-Aug-2009'); datenum('15-Aug-2010')];

ImpliedRepo = tfutimprepo(ReinvestData, Price, QtdFutPrice, ...
Settle, MatFut, ConvFactor, CouponRate, Maturity)

ImpliedRepo =

 -0.0200
 -0.0200

See Also tfutpricebyrepo, tfutyieldbyrepo
4-119

tfutpricebyrepo
4tfutpricebyrepoPurpose Theoretical futures bond price

Syntax [QtdFutPrice AccrInt] = tfutpricebyrepo(RepoData, ReinvestData,
Price, Settle, MatFut, ConvFactor, CouponRate, Maturity)

Arguments

Inputs (except RepoData and ReinvestData) must either be a scalar or a vector
of size equal to the number of Treasury futures (NFUT) by 1 or 1-by-NFUT.

Description [QtdFutPrice AccrInt] = tfutpricebyrepo(RepoData, ReinvestData,
Price, Settle, MatFut, ConvFactor, CouponRate, Maturity) computes
the theoretical futures bond price given the settlement price, the repo/funding
rates, and the reinvestment rate.

QtdFutPrice is the quoted futures price, per $100 notional.

AccrInt is the accrued interest due at the delivery date, per $100 notional.

RepoData Number of futures (NFUT) by 2 matrix of simple term
repo/funding rates in decimal and their bases in the form
of [RepoRate RepoBasis]

Specify RepoBasis as 2 = actual/360 or 3 = actual/365.

ReinvestData Number of futures (NFUT) by 2 matrix of rates and bases
for the reinvestment of intervening coupons in the form of
[ReinvestRate ReinvestBasis]

ReinvestRate is the simple reinvestment rate, in
decimal. Specify ReinvestBasis as 0 = not reinvested,
2 = actual/360, or 3 = actual/365.

Price Quoted clean prices of Treasury bonds per $100 notional
at Settle.

Settle Settlement/valuation date of futures contract.

MatFut Maturity date (or anticipated delivery dates) of futures
contract.

ConvFactor Conversion factor. See convfactor.

CouponRate Underlying bond annual coupon, in decimal.

Maturity Underlying bond maturity date.
4-120

tfutpricebyrepo
Examples Compute the quoted futures price and accrued interest due on the target
delivery date, given the following data.

RepoData = [0.020 2];
ReinvestData = [0.018 3];
Price = [114.416; 113.171];
Settle = datenum('11/15/2002');
MatFut = [datenum('15-Dec-2002'); datenum('15-Mar-2003')];
ConvFactor = [1 ; 0.9854];
CouponRate = [0.06;0.0575];
Maturity = [datenum('15-Aug-2009'); datenum('15-Aug-2010')];

[QtdFutPrice AccrInt] = tfutpricebyrepo(RepoData, ...
ReinvestData, Price, Settle, MatFut, ConvFactor, CouponRate, ...
Maturity)

QtdFutPrice =

 114.1201
 113.7090

AccrInt =

 1.9891
 0.4448

See Also tfutimprepo, tfutyieldbyrepo
4-121

tfutyieldbyrepo
4tfutyieldbyrepoPurpose Theoretical futures bond yield

Syntax FwdYield = tfutyieldbyrepo(RepoData, ReinvestData, Yield, Settle,
MatFut, ConvFactor, CouponRate, Maturity)

Arguments

Inputs (except RepoData and ReinvestData) must either be a scalar or a vector
of size equal to the number of Treasury futures (NFUT) by 1 or 1-by-NFUT.

Description FwdYield = tfutyieldbyrepo(RepoData, ReinvestData, Yield, Settle,
MatFut, ConvFactor, CouponRate, Maturity) computes the theoretical
futures bond yield given the settlement yield, the repo/funding rate, and the
reinvestment rate.

FwdYield is the forward yield to maturity, in decimal, compounded
semiannually.

RepoData Number of futures (NFUT) by 2 matrix of simple term
repo/funding rates in decimal and their bases in the form
of [RepoRate RepoBasis]

Specify RepoBasis as 2 = actual/360 or 3 = actual/365.

ReinvestData Number of futures (NFUT) by 2 matrix of rates and bases
for the reinvestment of intervening coupons in the form of
[ReinvestRate ReinvestBasis]

ReinvestmentRate is the simple reinvestment rate, in
decimal. Specify ReinvestBasis as 0 = not reinvested,
2 = actual/360, or 3 = actual/365.

Yield Yield to maturity of Treasury bonds per $100 notional at
Settle.

Settle Settlement/valuation date of futures contract.

MatFut Maturity date (or anticipated delivery dates) of futures
contract.

ConvFactor Conversion factor. See convfactor.

CouponRate Underlying bond annual coupon, in decimal.

Maturity Underlying bond maturity date.
4-122

tfutyieldbyrepo
Examples Compute the quoted futures bond yield, given the following data:

RepoData = [0.020 2];
ReinvestData = [0.018 3];
Yield = [0.0215; 0.0257];
Settle = datenum('11/15/2002');
MatFut = [datenum('15-Dec-2002'); datenum('15-Mar-2003')];
ConvFactor = [1; 0.9854];
CouponRate = [0.06; 0.0575];
Maturity = [datenum('15-Aug-2009'); datenum('15-Aug-2010')];

FwdYield = tfutyieldbyrepo(RepoData, ReinvestData, Yield,...
Settle, MatFut, ConvFactor, CouponRate, Maturity)

FwdYield =

0.0221
0.0282

See Also tfutimprepo, tfutpricebyrepo
4-123

zeroprice
4zeropricePurpose Price zero-coupon instruments given yield

Syntax Price = zeroprice(Yield, Settle, Maturity, Period, Basis,
EndMonthRule)

Arguments

Description Price = zeroprice(Yield, Settle, Maturity, Period, Basis,
EndMonthRule) calculates the prices for a portfolio of general short and long
term zero-coupon instruments given the yield of the instruments. Price is a
column vector containing a price for each zero-coupon instrument.

When there is less than one quasi-coupon, the function uses a simple yield
based upon “Period times Number of Days in quasi coupon period” day-year.
The default period is 2 and the default number of days is 180, which makes the
user-supplied yield a simple yield on a 360-day year.

Yield Scalar or vector containing yield to maturity of
instruments.

Settle Settlement date. A vector of serial date numbers or date
strings. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A vector of serial date numbers or date
strings.

Period (Optional) Scalar or vector specifying number of
quasi-coupons per year. Default = 2.

Basis (Optional) Day-count basis of the bond. A vector of
integers. 0 = actual/actual (default), 1 = 30/360 (SIA),
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA),
5 = 30/360 (ISDA), 6 = 30/360 (European),
7 = act/365 (Japanese).

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies
only when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. 1 = set rule on (default),
meaning that a bond’s coupon payment date is always
the last actual day of the month.
4-124

zeroprice
For longer term computations (more than one quasi-coupon) you should use
bond equivalent yield based upon present value (or compounding).

Formulas To compute the price when there is one or zero quasi-coupon periods to
redemption, zeroprice uses the formula

Quasi-coupon periods are the coupon periods that would exist if the bond were
paying interest at a rate other than zero.

When there is more than one quasi-coupon period to the redemption date,
zeroprice uses the formula

The elements of the equations are defined as follows.

Variable Definition

DSC Number of days from settlement date to next quasi-coupon
date as if the security paid periodic interest.

DSR Number of days from settlement date to the redemption date
(call date, put date, etc.).

E Number of days in quasi-coupon period.

M Number of quasi-coupon periods per year (standard for the
particular security involved).

Nq Number of quasi-coupon periods between settlement date
and redemption date. If this number contains a fractional
part, raise it to the next whole number.

Price RV

1 DSR
E

------------- Y
M
-----⋅⎝ ⎠

⎛ ⎞+
---------------------------------------=

Price RV

1 Y
M
-----+⎝ ⎠

⎛ ⎞
Nq 1 DSC

E
-------------+–

--=
4-125

zeroprice
Examples Example 1. Compute the price of a short-term zero-coupon instrument.

Settle = '24-Jun-1993';
Maturity = '1-Nov-1993';
Period = 2;
Basis = 0;
Yield = 0.04;

Price = zeroprice(Yield, Settle, Maturity, Period, Basis)

Price =

 98.6066

Example 2. Compute the prices of a portfolio of two zero-coupon instruments,
one short term and the other long term.

Settle = '24-Jun-1993';
Maturity = ['01-Nov-1993'; '15-Jan-2024'];
Basis = [0; 1];
Yield = [0.04; 0.1];

Price = zeroprice(Yield, Settle, Maturity, [], Basis)

Price =

98.6066
5.0697

Price Dollar price per $100 par value.

RV Redemption value.

Y Annual yield (decimal) when held to redemption.
4-126

zeroprice
See Also bndprice, cdprice, tbillprice, zeroyield

References Mayle, Jan. Standard Securities Calculation Methods. New York: Securities
Industry Association, Inc. Vol. 1, 3rd ed., 1993, ISBN 1-882936-01-9. Vol. 2,
1994, ISBN 1-882936-02-7.
4-127

zeroyield
4zeroyieldPurpose Yield of zero-coupon instruments given price

Syntax Yield = zeroyield(Price, Settle, Maturity, Period, Basis,
EndMonthRule)

Arguments

Description Yield = zeroyield(Price, Settle, Maturity, Period, Basis,
EndMonthRule) calculates the bond-equivalent yield for a portfolio of general
short and long term zero-coupon instruments given the price of the
instruments. Yield is a column vector containing a yield for each zero-coupon
instrument.

When the maturity date is fewer than 182 days away and the basis is
actual/365, the function uses a simple-interest algorithm. If maturity is more
than 182 days away, the function uses present value calculations.

Price Scalar or vector containing prices of instruments.

Settle Settlement date. A vector of serial date numbers or date
strings. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A vector of serial date numbers or date
strings.

Period (Optional) Scalar or vector specifying number of
quasi-coupons per year. Default = 2.

Basis (Optional) Day-count basis of the bond. A vector of
integers. 0 = actual/actual (default), 1 = 30/360 (SIA),
2 = actual/360, 3 = actual/365, 4 = 30/360 (PSA),
5 = 30/360 (ISDA), 6 = 30/360 (European),
7 = act/365 (Japanese).

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies
only when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. 1 = set rule on (default),
meaning that a bond’s coupon payment date is always
the last actual day of the month.
4-128

zeroyield
When the basis is actual/360, the simple interest algorithm gives the
money-market yield for short (one to six months to maturity) Treasury bills.

The present value algorithm always gives the bond equivalent yield of the
zero-coupon instrument. The algorithm is equivalent to calling bndyield with
the zero-coupon information within one basis point.

Formulas To compute the yield when there is zero or one quasi-coupon periods to
redemption, zeroyield uses the formula

Quasi-coupon periods are the coupon periods which would exist if the bond was
paying interest at a rate other than zero. The first term calculates the yield on
invested dollars. The second term converts this yield to a per annum basis.

When there is more than one quasi-coupon period to the redemption date,
zeroyield uses the formula

The elements of the equations are defined as follows.

Variable Definition

DSC Number of days from settlement date to next quasi-coupon
date as if the security paid periodic interest.

DSR Number of days from settlement date to redemption date
(call date, put date, etc.).

E Number of days in quasi-coupon period.

M Number of quasi-coupon periods per year (standard for the
particular security involved).

Yield RV P–
P

-------------------⎝ ⎠
⎛ ⎞ M E⋅

DSR
--------------⎝ ⎠
⎛ ⎞⋅=

Yield RV
P

---------⎝ ⎠
⎛ ⎞

1

Nq 1 DSC
E

-------------+–

1–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

M⋅=
4-129

zeroyield
Examples Example 1. Compute the yield of a short-term zero-coupon instrument.

Settle = '24-Jun-1993';
Maturity = '1-Nov-1993';
Basis = 0;
Price = 95;

Yield = zeroyield(Price, Settle, Maturity, [], Basis)

Yield =

 0.1490

Example 2. Recompute the yield of the same instrument using a different
day-count basis.

Settle = '24-Jun-1993';
Maturity = '1-Nov-1993';
Basis = 1;
Price = 95;

Yield = zeroyield(Price, Settle, Maturity, [], Basis)

Yield =

 0.1492

Nq Number of quasi-coupon periods between settlement date
and redemption date. If this number contains a fractional
part, raise it to the next whole number.

P Dollar price per $100 par value.

RV Redemption value.

Yield Annual yield (decimal) when held to redemption.
4-130

zeroyield
Example 3. Compute the yield of a long-term zero-coupon instrument.

Settle = '24-Jun-1993';
Maturity = '15-Jan-2024';
Basis = 0;
Price = 9;

Yield = zeroyield(Price, Settle, Maturity, [], Basis)

Yield =

 0.0804

See Also bndyield, cdyield, tbillyield, zeroprice

References Mayle, Jan. Standard Securities Calculation Methods. New York: Securities
Industry Association, Inc. Vol. 1, 3rd ed., 1993, ISBN 1-882936-01-9. Vol. 2,
1994, ISBN 1-882936-02-7.
4-131

zeroyield
4-132

Glossary
American option An option that can be exercised any time until its expiration date. Contrast
with European option.

Amortization Reduction in value of an asset over some period for accounting purposes.
Generally used with intangible assets. Depreciation is the term used with fixed
or tangible assets.

Annuity A series of payments over a period of time. The payments are usually in equal
amounts and usually at regular intervals such as quarterly, semiannually, or
annually.

Arbitrage The purchase of securities on one market for immediate resale on another
market in order to profit from a price or currency discrepancy.

Basis point One hundredth of one percentage point, or 0.0001.

Beta The price volatility of a financial instrument relative to the price volatility of a
market or index as a whole. Beta is most commonly used with respect to
equities. A high-beta instrument is riskier than a low-beta instrument.

Binomial model A method of pricing options or other equity derivatives in which the probability
over time of each possible price follows a binomial distribution. The basic
assumption is that prices can move to only two values (one higher and one
lower) over any short time period.

Black-Scholes
model

The first complete mathematical model for pricing options, developed by
Fischer Black and Myron Scholes. It examines market price, strike price,
volatility, time to expiration, and interest rates. It is limited to only certain
kinds of options.

Bollinger band
chart

A financial chart that plots actual asset data along with three other bands of
data: the upper band is two standard deviations above a user-specified moving
average; the lower band is two standard deviations below that moving average;
and the middle band is the moving average itself.

Bootstrapping,
bootstrap method

An arithmetic method for backing an implied zero curve out of the par yield
curve.

Building a
binomial tree

For a binomial option model: plotting the two possible short-term price-changes
values, and then the subsequent two values each, and then the subsequent two
values each, and so on over time, is known as “building a binomial tree.” See
Binomial model.

Call a. An option to buy a certain quantity of a stock or commodity for a specified
price within a specified time. See Put. b. A demand to submit bonds to the
issuer for redemption before the maturity date. c. A demand for payment of a
debt. d. A demand for payment due on stock bought on margin.
Glossary-1

Glo
Callable bond A bond that allows the issuer to buy back the bond at a predetermined price at
specified future dates. The bond contains an embedded call option; i.e., the
holder has sold a call option to the issuer. See Puttable bond.

Cap Interest-rate option that guarantees that the rate on a floating-rate loan will
not exceed a certain level.

Caplet A cap that is guaranteed for one particular date.

Cash flow Cash received and paid over time.

Cheapest to
deliver

Cheapest to deliver represents the least expensive underlying product that can
be delivered upon expiry to satisfy the requirements of a derivative contract.

Collar Interest-rate option that guarantees that the rate on a floating-rate loan will
not exceed a certain upper level nor fall below a lower level. It is designed to
protect an investor against wide fluctuations in interest rates.

Conditional
prepayment rate
(CPR)

The fraction of mortgage principal that had not prepaid at the beginning of any
year but does prepay during the year. CPR is an annualization of the single
monthly mortality rate. See also Single monthly mortality.

Conversion
factor

The rate used to adjust differences in bond values for delivery on U. S. Treasury
bond futures contracts.

Convexity A measure of the rate of change in duration; measured in time. The greater the
rate of change, the more the duration changes as yield changes.

Correlation The simultaneous change in value of two random numeric variables.

Correlation
coefficient

A statistic in which the covariance is scaled to a value between minus one
(perfect negative correlation) and plus one (perfect positive correlation).

Coupon Detachable certificate attached to a bond that shows the amount of interest
payable at regular intervals, usually semiannually. Originally coupons were
actually attached to the bonds and had to be cut off or “clipped” to redeem them
and receive the interest payment.

Coupon dates The dates when the coupons are paid. Typically a bond pays coupons annually
or semiannually.

Coupon rate The nominal interest rate that the issuer promises to pay the buyer of a bond.

Covariance A measure of the degree to which returns on two assets move in tandem. A
positive covariance means that asset returns move together; a negative
covariance means they vary inversely.
ssary-2

Glossary
Delta The rate of change of the price of a derivative security relative to the price of
the underlying asset; i.e., the first derivative of the curve that relates the price
of the derivative to the price of the underlying security.

Depreciation Reduction in value of fixed or tangible assets over some period for accounting
purposes. See Amortization.

Derivative A financial instrument that is based on some underlying asset. For example,
an option is a derivative instrument based on the right to buy or sell an
underlying instrument.

Discount curve The curve of discount rates vs. maturity dates for bonds.

Duration The expected life of a fixed-income security considering its coupon yield,
interest payments, maturity, and call features. As market interest rates rise,
the duration of a financial instrument decreases. See Macaulay duration.

Efficient frontier A graph representing a set of portfolios that maximizes expected return at each
level of portfolio risk. See Markowitz model.

Elasticity See Lambda.

Eurodollar U.S. dollar-denominated deposits at foreign banks or foreign branches of
American banks.

European option An option that can be exercised only on its expiration date. Contrast with
American option.

Exercise price The price set for buying an asset (call) or selling an asset (put). The strike price.

Face value The maturity value of a security. Also known as par value, principal value, or
redemption value.

Fixed-income
security

A security that pays a specified cash flow over a specific period. Bonds are
typical fixed-income securities.

Floor Interest-rate option that guarantees that the rate on a floating-rate loan will
not fall below a certain level.

Forward curve The curve of forward interest rates vs. maturity dates for bonds.

Forward rate The future interest rate of a bond inferred from the term structure, especially
from the yield curve of zero-coupon bonds, calculated from the growth factor of
an investment in a zero held until maturity.
Glossary-3

Glo
Forward rate
agreement
(FRA)

A forward contract that determines an interest rate to be paid or received on
an obligation beginning at a start date sometime in the future.

Future value The value that a sum of money (the present value) earning compound interest
will have in the future.

Gamma The rate of change of delta for a derivative security relative to the price of the
underlying asset; i.e., the second derivative of the option price relative to the
security price.

Greeks Collectively, “greeks” refer to the financial measures delta, gamma, lambda,
rho, theta, and vega, which are sensitivity measures used in evaluating
derivatives.

Hedge A securities transaction that reduces or offsets the risk on an existing
investment position.

Implied volatility For an option, the variance that makes a call option price equal to the market
price. Given the option price, strike price, and other factors, the Black-Scholes
model computes implied volatility.

Internal rate of
return

a. The average annual yield earned by an investment during the period held.
b. The effective rate of interest on a loan. c. The discount rate in discounted
cash flow analysis. d. The rate that adjusts the value of future cash receipts
earned by an investment so that interest earned equals the original cost. See
Yield to maturity.

Issue date The date a security is first offered for sale. That date usually determines when
interest payments, known as coupons, are made.

Lambda The percentage change in the price of an option relative to a 1% change in the
price of the underlying security. Also known as Elasticity.

LIBOR Abbreviation for London Interbank Offered Rate, an interest rate set daily in
London. Applies to loans among large international banks.

Long position Outright ownership of a security or financial instrument. The owner expects
the price to rise in order to make a profit on some future sale.

Long rate The yield on a zero-coupon Treasury bond.

Macaulay
duration

A widely used measure of price sensitivity to yield changes developed by
Frederick Macaulay in 1938. It is measured in years and is a weighted
average-time-to-maturity of an instrument. The Macaulay duration of an
income stream, such as a coupon bond, measures how long, on average, the
ssary-4

Glossary
owner waits before receiving a payment. It is the weighted average of the times
payments are made, with the weights at time T equal to the present value of
the money received at time T.

Markowitz model A model for selecting an optimum investment portfolio, devised by H. M.
Markowitz. It uses a discrete-time, continuous-outcome approach for modeling
investment problems, often called the mean-variance paradigm. See Efficient
frontier.

Maturity date The date when the issuer returns the final face value of a bond to the buyer.

Mean a. A number that typifies a set of numbers, such as a geometric mean or an
arithmetic mean. b. The average value of a set of numbers.

Modified
duration

The Macaulay duration discounted by the per-period interest rate; i.e., divided
by (1+rate/frequency).

Monte-Carlo
simulation

A mathematical modeling process. For a model that has several parameters
with statistical properties, pick a set of random values for the parameters and
run a simulation. Then pick another set of values, and run it again. Run it
many times (often 10,000 times) and build up a statistical distribution of
outcomes of the simulation. This distribution of outcomes is then used to
answer whatever question you are asking.

Moving average A price average that is adjusted by adding other parametrically determined
prices over some time period.

Moving-averages
chart

A financial chart that plots leading and lagging moving averages for prices or
values of an asset.

Normal
(bell-shaped)
distribution

In statistics, a theoretical frequency distribution for a set of variable data,
usually represented by a bell-shaped curve symmetrical about the mean.

Notional The nominal value used to calculate swap payments.

Odd first or last
period

Fixed-income securities may be purchased on dates that do not coincide with
coupon or payment dates. The length of the first and last periods may differ
from the regular period between coupons, and thus the bond owner is not
entitled to the full value of the coupon for that period. Instead, the coupon is
pro-rated according to how long the bond is held during that period.

Off-the-run All Treasury bonds and notes issued before the most recently issued bond or
note of a particular maturity. These are the opposite of on-the-run treasuries.
Glossary-5

Glo
On-the-run The most recently issued U.S. Treasury bond or note of a particular maturity.
These are the opposite of off-the-run treasuries.

Option A right to buy or sell specific securities or commodities at a stated price
(exercise or strike price) within a specified time. An option is a type of
derivative.

Option-adjusted
spread

A yield spread that is not directly attributable to the characteristics of a fixed
income security.

Passthrough A type of mortgage-backed security in which the interest and principal
payments on the underlying mortgages “pass through” to the holders, pro rata,
minus a servicing fee.

Par value The maturity or face value of a security or other financial instrument.

Par yield curve The yield curve of bonds selling at par, or face, value.

Present value Today’s value of an investment that yields some future value when invested to
earn compounded interest at a known interest rate.; i.e., the future value at a
known period in time discounted by the interest rate over that time period.

Principal value See Par value.

Purchase price Price actually paid for a security. Typically the purchase price of a bond is not
the same as the redemption value.

Put An option to sell a stipulated amount of stock or securities within a specified
time and at a fixed exercise price. See Call.

Puttable bond A bond that allows the holder to redeem the bond at a predetermined price at
specified future dates. The bond contains an embedded put option; i.e., the
holder has bought a put option. See Callable bond.

Redemption
value

See Par value.

Regression
analysis

Statistical analysis techniques that quantify the relationship between two or
more variables. The intent is quantitative prediction or forecasting,
particularly using a small population to forecast the behavior of a large
population.

Rho The rate of change in a derivative’s price relative to the underlying security’s
risk-free interest rate.
ssary-6

Glossary
Sensitivity The “what if” relationship between variables; the degree to which changes in
one variable cause changes in another variable. A specific synonym is
volatility.

Settlement date The date when money first changes hands; i.e., when a buyer actually pays for
a security. It need not coincide with the issue date.

Short rate The annualized one-period interest rate.

Short sale, short
position

The sale of a security or financial instrument not owned, in anticipation of a
price decline and making a profit by purchasing the instrument later at a lower
price, and then delivering the instrument to complete the sale. See Long
position.

Single monthly
mortality (SMM)

The fraction of mortgage principal that had not prepaid at the beginning of a
given month but does prepay during the month. See also Conditional
prepayment rate.

Spot curve, spot
yield curve

See Zero curve.

Spot rate The current interest rate appropriate for discounting a cash flow of some given
maturity.

Spread For options, a combination of call or put options on the same stock with
differing exercise prices or maturity dates.

Standard
deviation

A measure of the variation in a distribution, equal to the square root of the
arithmetic mean of the squares of the deviations from the arithmetic mean; the
square root of the variance.

Stochastic Involving or containing a random variable or variables; involving chance or
probability.

Straddle A strategy used in trading options or futures. It involves simultaneously
purchasing put and call options with the same exercise price and expiration
date, and it is most profitable when the price of the underlying security is very
volatile.

Strike Exercise a put or call option.

Strike price See Exercise price.

Swap A contract between two parties to exchange cash flows in the future according
to some formula.
Glossary-7

Glo
Swaption A swap option; an option on an interest-rate swap. The option gives the holder
the right to enter into a contracted interest-rate swap at a specified future date.
See Swap.

Tenor Life of a swap.

Term structure The relationship between the yields on fixed-interest securities and their
maturity dates. Expectation of changes in interest rates affects term structure,
as do liquidity preferences and hedging pressure. A yield curve is one
representation in the term structure.

Theta The rate of change in the price of a derivative security relative to time. Theta
is usually very small or negative since the value of an option tends to drop as
it approaches maturity.

Treasury bill Short-term U.S. Government security issued at a discount from the face value
and paying the face value at maturity.

Treasury bond Long-term debt obligation of the U.S. Government that makes coupon
payments semiannually and is sold at or near par value in $1000
denominations or higher. Face value is paid at maturity.

Variance The dispersion of a variable. The square of the standard deviation.

Vega The rate of change in the price of a derivative security relative to the volatility
of the underlying security. When vega is large the security is sensitive to small
changes in volatility.

Volatility a. Another general term for sensitivity. b. The standard deviation of the
annualized continuously compounded rate of return of an asset. c. A measure
of uncertainty or risk.

Yield a. Measure of return on an investment, stated as a percentage of price. Yield
can be computed by dividing return by purchase price, current market value,
or other measure of value. b. Income from a bond expressed as an annualized
percentage rate. c. The nominal annual interest rate that gives a future value
of the purchase price equal to the redemption value of the security. Any coupon
payments determine part of that yield.

Yield curve Graph of yields (vertical axis) of a particular type of security versus the time to
maturity (horizontal axis). This curve usually slopes upward, indicating that
investors usually expect to receive a premium for securities that have a longer
time to maturity. The benchmark yield curve is for U.S. Treasury securities
with maturities ranging from three months to 30 years. See Term structure.
ssary-8

Glossary
Yield to maturity A measure of the average rate of return that will be earned on a bond if held to
maturity.

Zero curve,
zero-coupon yield
curve

A yield curve for zero-coupon bonds; zero rates versus maturity dates. Since the
maturity and duration (Macaulay duration) are identical for zeros, the zero
curve is a pure depiction of supply/demand conditions for loanable funds across
a continuum of durations and maturities. Also known as spot curve or spot
yield curve.

Zero-coupon
bond, or Zero

A bond that, instead of carrying a coupon, is sold at a discount from its face
value, pays no interest during its life, and pays the principal only at maturity.
Glossary-9

Glo
ssary-10

Index
A
actual/360 2-2

B
bkcall 4-6
bkcaplet 4-10
bkfloorlet 4-12
bkput 4-14
bond equivalent yield 4-78
break-even discount rate 2-3

C
cbprice 4-19
cdai 4-23
cdprice 4-25
cdyield 4-27
cfamounts 4-29
cheapest to deliver (CTD) 3-15
conditional prepayment rate (CPR) 1-4
convertible bond 3-10
convfactor 4-34
coupon bond functions 2-7
CPR

conditional payment rate 1-4
CTD

cheapest to deliver 3-15

D
discount security 2-2
duration

modified 1-8
DV01 3-16
E
effective duration 1-9

defined mathematically 1-9

F
forward rate agreement 4-37

defined 4-41

I
implied repo 3-15

L
liborduration 4-36
liborfloat2fixed 4-37
liborprice 4-41

M
mbscfamounts 4-44
mbsconvp 4-47
mbsconvy 4-49
mbsdurp 4-51
mbsdury 4-53
mbsnoprepay 4-55
mbsoas2price 4-56
mbsoas2yield 4-59
mbspassthrough 4-63
mbsprice 4-65
mbsprice2oas 4-68
mbsprice2speed 4-72
mbswal 4-75
mbsyield 4-77
mbsyield2oas 4-80
Index-1

Index

Ind
mbsyield2speed 4-83
modified duration 1-8
mortage-backed securities 1-2
mortgage yield 4-78

O
OAS

option-adjusted spread 1-9
off-the-run 2-14
on-the-run 2-14
option-adjusted spread

defined 1-10
option-adjusted spread (OAS) 1-9

effect on pool pricing 1-9

P
passthrough certificate 1-2
prepayment 1-3
prepayment summary 1-15
psaspeed2default 4-86
psaspeed2rate 4-87
Public Securities Association (PSA) 1-3

Q
quasi-coupon periods

zeroprice 4-125
zeroyield 4-129

S
seasoned prepayment vector 1-12
single monthly mortality (SMM) rate 1-4
SMM

single monthly mortality rate 1-4
ex-2
spread 2-14
term structure of 2-14

stepcpn 4-98
stepcpncfamounts 4-89
stepcpnprice 4-94

T
tbilldisc2yield 4-102
tbillprice 4-104
tbillrepo 4-106
tbillval01 4-108
tbillyield 4-110
tbillyield2disc 4-112
tenor 4-36
tfutbyprice 4-114
tfutbyyield 4-116
tfutimprepo 4-118
tfutpricebyrepo 4-120
time factor 4-31
Treasury bills

defined 2-2
Treasury bonds 2-2
Treasury notes 2-2

Z
zero-coupon bond

defined 2-7
quality of measurement 2-7

zeroprice 4-124
zeroyield 4-128

	Mortgage-Backed Securities
	What Are Mortgage-Backed Securities?
	Using Fixed-Rate Mortgage Pool Functions
	Inputs to Functions
	Generating Prepayment Vectors
	Mortgage Prepayments
	Risk Measurement
	Mortgage Pool Valuation
	Computing Option-Adjusted Spread (OAS)
	Prepayments with Fewer Than 360 Months Remaining
	Pools with Different Numbers of Coupons Remaining

	Debt Instruments
	Treasury Bills Defined
	Computing Treasury Bill Price and Yield
	Treasury Bill Repurchase Agreements
	Treasury Bill Yields

	Using Zero-Coupon Bonds
	Measuring Zero-Coupon Bond Function Quality
	Pricing Treasury Notes
	Pricing Corporate Bonds

	Stepped-Coupon Bonds
	Cash Flows from Stepped-Coupon Bonds
	Price and Yield of Stepped-Coupon Bonds

	Term Structure Calculations
	Computing Spot and Forward Curves
	Computing Spreads

	Derivative Securities
	Pricing and Hedging
	Swap Pricing Assumptions
	Swap Pricing Example
	Portfolio Hedging

	Convertible Bond Valuation
	Treasury Bond Futures
	Theoretical Prices
	Implied Repo
	Hedge Parameters

	Function Reference
	Functions — Categorical List
	Cash Flows
	Certificates of Deposit
	Convertible Bonds
	Derivative Securities
	Mortgage-Backed Securities
	Option Adjusted Spread Computations
	Stepped Coupon Bonds
	Treasury Bills
	Treasury Bond Futures
	Zero Coupon Instruments

	Functions — Alphabetical List

	Glossary
	Index

